60 research outputs found

    Gender differences and inflammation: an in vitro model of blood cells stimulation in prepubescent children

    Get PDF
    Gender influences clinical presentations and markers in inflammatory diseases. In many chronic conditions, frequency of complications is greater in females, suggesting that continuous inflammatory reaction may induce greater damage in targeted organs and functions.Journal ArticleSCOPUS: ar.jinfo:eu-repo/semantics/publishe

    LTBP2 null mutations in an autosomal recessive ocular syndrome with megalocornea, spherophakia, and secondary glaucoma

    Get PDF
    The latent TGFβ-binding proteins (LTBPs) and fibrillins are a superfamily of large, multidomain proteins with structural and TGFβ-signalling roles in the extracellular matrix. Their importance is underscored by fibrillin-1 mutations responsible for Marfan syndrome, but their respective roles are still incompletely understood. We report here on two families where children from healthy, consanguineous parents, presented with megalocornea and impaired vision associated with small, round, dislocated lenses (microspherophakia and ectopia lentis) and myopia, as well as a high-arched palate, and, in older children, tall stature with an abnormally large arm span over body height ratio, that is, associated features of Marfan syndrome. Glaucoma was not present at birth, but was diagnosed in older children. Whole genome homozygosity mapping followed by candidate gene analysis identified homozygous truncating mutations of LTBP2 gene in patients from both families. Fibroblast mRNA analysis was consistent with nonsense-mediated mRNA decay, with no evidence of mutated exon skipping. We conclude that biallelic null LTBP2 mutations cause the ocular phenotype in both families and could lead to Marfan-like features in older children. We suggest that intraocular pressures should be followed-up in young children with an ocular phenotype consisting of megalocornea, spherophakia and/or lens dislocation, and recommend LTBP2 gene analysis in these patients

    Expanding the clinical and mutational spectrum of Kaufman oculocerebrofacial syndrome with biallelic UBE3B mutations

    Get PDF
    Biallelic mutations of UBE3B have recently been shown to cause Kaufman oculocerebrofacial syndrome (also reported as blepharophimosis-ptosis-intellectual disability syndrome), an autosomal recessive condition characterized by hypotonia, developmental delay, intellectual disability, congenital anomalies, characteristic facial dysmorphic features, and low cholesterol levels. To date, six patients with either missense mutations affecting the UBE3B HECT domain or truncating mutations have been described. Here, we report on the identification of homozygous or compound heterozygous UBE3B mutations in six additional patients from five unrelated families using either targeted UBE3B sequencing in individuals with suggestive facial dysmorphic features, or exome sequencing. Our results expand the clinical and mutational spectrum of the UBE3B-related disorder in several ways. First, we have identified UBE3B mutations in individuals who previously received distinct clinical diagnoses: two sibs with Toriello-Carey syndrome as well as the patient reported to have a "new” syndrome by Buntinx and Majewski in 1990. Second, we describe the adult phenotype and clinical variability of the syndrome. Third, we report on the first instance of homozygous missense alterations outside the HECT domain of UBE3B, observed in a patient with mildly dysmorphic facial features. We conclude that UBE3B mutations cause a clinically recognizable and possibly underdiagnosed syndrome characterized by distinct craniofacial features, hypotonia, failure to thrive, eye abnormalities, other congenital malformations, low cholesterol levels, and severe intellectual disability. We review the UBE3B-associated phenotypes, including forms that can mimick Toriello-Carey syndrome, and suggest the single designation "Kaufman oculocerebrofacial syndrome”

    Mutations in sphingosine-1-phosphate lyase cause nephrosis with ichthyosis and adrenal insufficiency

    Get PDF
    Steroid-resistant nephrotic syndrome (SRNS) causes 15% of chronic kidney disease cases. A mutation in 1 of over 40 monogenic genes can be detected in approximately 30% of individuals with SRNS whose symptoms manifest before 25 years of age. However, in many patients, the genetic etiology remains unknown. Here, we have performed whole exome sequencing to identify recessive causes of SRNS. In 7 families with SRNS and facultative ichthyosis, adrenal insufficiency, immunodeficiency, and neurological defects, we identified 9 different recessive mutations in SGPL1, which encodes sphingosine-1-phosphate (S1P) lyase. All mutations resulted in reduced or absent SGPL1 protein and/or enzyme activity. Overexpression of cDNA representing SGPL1 mutations resulted in subcellular mislocalization of SGPL1. Furthermore, expression of WT human SGPL1 rescued growth of SGPL1-deficient dpl1. yeast strains, whereas expression of disease-associated variants did not. Immunofluorescence revealed SGPL1 expression in mouse podocytes and mesangial cells. Knockdown of Sgpl1 in rat mesangial cells inhibited cell migration, which was partially rescued by VPC23109, an S1P receptor antagonist. In Drosophila, Sply mutants, which lack SGPL1, displayed a phenotype reminiscent of nephrotic syndrome in nephrocytes. WT Sply, but not the disease-associated variants, rescued this phenotype. Together, these results indicate that SGPL1 mutations cause a syndromic form of SRNS

    Performance and Diagnostic Value of Genome-Wide Noninvasive Prenatal Testing in Multiple Gestations.

    Full text link
    OBJECTIVE: To evaluate the accuracy and diagnostic value of genome-wide noninvasive prenatal testing (NIPT) for the detection of fetal aneuploidies in multiple gestations, with a focus on dichorionic-diamniotic twin pregnancies. METHODS: We performed a retrospective cohort study including data from pregnant women with a twin or higher-order gestation who underwent genome-wide NIPT at one of the eight Belgian genetic centers between November 1, 2013, and March 1, 2020. Chorionicity and amnionicity were determined by ultrasonography. Follow-up invasive testing was carried out in the event of positive NIPT results. Sensitivity and specificity were calculated for the detection of trisomy 21, 18, and 13 in the dichorionic-diamniotic twin cohort. RESULTS: Unique NIPT analyses were performed for 4,150 pregnant women with a multiple gestation and an additional 767 with vanishing gestations. The failure rate in multiple gestations excluding vanishing gestations ranged from 0% to 11.7% among the different genetic centers. Overall, the failure rate was 4.8%, which could be reduced to 1.2% after single resampling. There were no common fetal trisomies detected among the 86 monochorionic-monoamniotic and 25 triplet cases. Two monochorionic-diamniotic twins had an NIPT result indicative of a trisomy 21, which was confirmed in both fetuses. Among 2,716 dichorionic-diamniotic twin gestations, a sensitivity of 100% (95% CI 74.12-100%) and a specificity of 100% (95% CI 99.86-100%) was reached for trisomy 21 (n=12). For trisomy 18 (n=3), the respective values were 75% (95% CI 30.06-95.44%) sensitivity and 100% (95% CI 99.86-100%) specificity, and for trisomy 13 (n=2), 100% (95% CI 20.65-100%) sensitivity and 99.96% (95% CI 99.79-99.99%) specificity. In the vanishing gestation group, 28 NIPT results were positive for trisomy 21, 18, or 13, with only five confirmed trisomies. CONCLUSION: Genome-wide NIPT performed accurately for detection of aneuploidy in dichorionic-diamniotic twin gestations

    Etude génétique de maladies rares chez des patients issus de mariages consanguins

    No full text
    La découverte du défaut moléculaire en cause dans les maladies rares est une étape importante en vue d'un traitement spécifique ainsi que d'un meilleur diagnostic, ce qui permet de réduire le délai diagnostique, de mieux connaître l'histoire naturelle de la maladie, et ainsi d'améliorer les traitements symptomatiques et la prévention secondaire. Les gènes de plus de 1500 maladies rares monogéniques restent à découvrir. Beaucoup de maladies rares qui frappent les enfants de parents en bonne santé correspondent à des maladies génétiques récessives autosomiques. Certaines paraissent extrêmement rares mais, une fois le gène identifié dans une famille princeps, beaucoup d'autres cas s'avèrent dus à des défauts du même gène. Les patients que nous étudions sont issus de familles consanguines comptant souvent de nombreux sujets atteints. Une seule famille de ce type peut permettre l'identification du gène par cartographie d'homozygotie et clonage positionnel.Nous avons recruté dans ce travail des cas familiaux ou sporadiques de six maladies autosomiques récessives rares de gène inconnu. La stratégie de cartographie par homozygotie nous a permis de mettre en évidence de nouveaux loci morbides dans quatre de ces maladies (épilepsie myoclonique progressive EPM3 ;syndrome marfanoïde avec microsphérophakie ;atrophie optique isolée ;et syndrome de microcéphalie et diabète précoce) ou de réduire la taille de loci déjà connus (microcéphalies primaires MCPH2 et MCPH4 ;et syndrome de Harboyan CDPD1). Nous avons pu caractériser de nouvelles mutations dans les gènes déjà connus ASPM (microcéphalie primaire MCPH5) et SLC4A11 (syndrome de Harboyan) et corréler celles-ci aux données cliniques. Enfin nous avons identifié les gènes KCTD7 et LTBP2 comme responsables respectivement des maladies EPM3 et syndrome marfanoïde avec microsphérophakie, en y découvrant des mutations chez les malades.Doctorat en Sciences médicalesinfo:eu-repo/semantics/nonPublishe

    A mutation update on the LDS-associated genes TGFB2/3 and SMAD2/3

    No full text
    The Loeys–Dietz syndrome (LDS) is a connective tissue disorder affecting the cardiovascular, skeletal, and ocular system. Most typically, LDS patients present with aortic aneurysms and arterial tortuosity, hypertelorism, and bifid/broad uvula or cleft palate. Initially, mutations in transforming growth factor-β (TGF-β) receptors (TGFBR1 and TGFBR2) were described to cause LDS, hereby leading to impaired TGF-β signaling. More recently, TGF-β ligands, TGFB2 and TGFB3, as well as intracellular downstream effectors of the TGF-β pathway, SMAD2 and SMAD3, were shown to be involved in LDS. This emphasizes the role of disturbed TGF-β signaling in LDS pathogenesis. Since most literature so far has focused on TGFBR1/2, we provide a comprehensive review on the known and some novel TGFB2/3 and SMAD2/3 mutations. For TGFB2 and SMAD3, the clinical manifestations, both of the patients previously described in the literature and our newly reported patients, are summarized in detail. This clearly indicates that LDS concerns a disorder with a broad phenotypical spectrum that is still emerging as more patients will be identified. All mutations described here are present in the corresponding Leiden Open Variant Database.0SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Congenital hereditary endothelial dystrophy with progressive sensorineural deafness (Harboyan syndrome).

    Get PDF
    Harboyan syndrome is a degenerative corneal disorder defined as congenital hereditary endothelial dystrophy (CHED) accompanied by progressive, postlingual sensorineural hearing loss. To date, 24 cases from 11 families of various origin (Asian Indian, South American Indian, Sephardi Jewish, Brazilian Portuguese, Dutch, Gypsy, Moroccan, Dominican) have been reported. More than 50% of the reported cases have been associated with parental consanguinity. The ocular manifestations in Harboyan syndrome include diffuse bilateral corneal edema occurring with severe corneal clouding, blurred vision, visual loss and nystagmus. They are apparent at birth or within the neonatal period and are indistinguishable from those characteristic of the autosomal recessive CHED (CHED2). Hearing deficit in Harboyan is slowly progressive and typically found in patients 10-25 years old. There are no reported cases with prelinglual deafness, however, a significant hearing loss in children as young as 4 years old has been detected by audiometry, suggesting that hearing may be affected earlier, even at birth. Harboyan syndrome is caused by mutations in the SLC4A11 gene located at the CHED2 locus on chromosome 20p13-p12, indicating that CHED2 and Harboyan syndrome are allelic disorders. A total of 62 different SLC4A11 mutations have been reported in 98 families (92 CHED2 and 6 Harboyan). All reported cases have been consistent with autosomal recessive transmission. Diagnosis is based on clinical criteria, detailed ophthalmological assessment and audiometry. A molecular confirmation of the clinical diagnosis is feasible. A variety of genetic, metabolic, developmental and acquired diseases presenting with clouding of the cornea should be considered in the differential diagnosis (Peters anomaly, sclerocornea, limbal dermoids, congenital glaucoma). Audiometry must be performed to differentiate Harboyan syndrome from CHED2. Autosomal recessive types of CHED (CHED2 and Harboyan syndrome) should carefully be distinguished from the less severe autosomal dominant type CHED1. The ocular abnormalities in patients with Harboyan syndrome may be treated with topical hyperosmolar solutions. However, corneal transplantation (penetrating keratoplasty) represents definitive treatment. Corneal transplantation produces a substantial visual gain and has a relatively good surgical prognosis. Audiometric monitoring should be offered to all patients with CHED2. Hearing aids may be necessary in adolescence.Journal ArticleResearch Support, Non-U.S. Gov'tReviewinfo:eu-repo/semantics/publishe

    Non syndromic recessive optic neuropathy: new findings

    No full text
    info:eu-repo/semantics/nonPublishe

    Novel mutations in prenatal diagnosis of primary microcephaly.

    No full text
    CommentLetterFLWINinfo:eu-repo/semantics/publishe
    • …
    corecore