17 research outputs found

    Expression of programmed death ligand 1 (PD-L1) is associated with poor prognosis in human breast cancer

    Get PDF
    Recent studies in multiple epithelial cancers have shown thatthe inhibitory receptor programmed cell death 1 (PD-1) is expressed on tumor-infiltrating lymphocytes and/or programmed death ligand 1 (PD-L1) is expressed on tumor cells, suggesting that antitumor immunity may be modulated by the PD-1/PD-L1 signaling pathway. In addition, phase 1 clinical trials with monoclonal antibodies targeting PD-1 or PD-L1 have shown promising results in several human cancers. The purpose of this study was to investigate the impact of PD-L1 expression in human breast cancer specimens. We conducted an immunohistochemistry study using a tissue microarray encompassing 650 evaluable formalin-fixed breast cancer cases with detailed clinical annotation and outcomes data. PD-L1 was expressed in 152 (23.4%) of the 650 breast cancer specimens. Expression was significantly associated with age, tumor size, AJCC primary tumor classification, tumor grade, lymph node status, absence of ER expression, and high Ki-67 expression. In univariate analysis, PD-L1 expression was associated with a significantly worse OS. In multivariate analysis, PD-L1 expression remained an independent negative prognostic factor for OS. In subset analyses, expression of PD-L1 was associated with significantly worse OS in the luminal B HER2− subtype, the luminal B HER2+ subtype, the HER2 subtype, and the basal-like subtype. This is the first study to demonstrate that PD-L1 expression is an independent negative prognostic factor in human breast cancer. This finding has important implications for the application of antibody therapies targeting the PD-1/PD-L1 signaling pathway in this disease

    Comprehensive Treatment Algorithms of the Swiss Peritoneal Cancer Group for Peritoneal Cancer of Gastrointestinal Origin.

    Get PDF
    Peritoneal cancer (PC) is a dire finding, yet in selected patients, long-term survival is possible. Complete cytoreductive surgery (CRS) together with combination immunochemotherapy is essential to achieve cure. Hyperthermic intraperitoneal chemotherapy (HIPEC) and pressurized intraperitoneal aerosol chemotherapy (PIPAC) are increasingly added to the multimodal treatment. The Swiss Peritoneal Cancer Group (SPCG) is an interdisciplinary group of expert clinicians. It has developed comprehensive treatment algorithms for patients with PC from pseudomyxoma peritonei, peritoneal mesothelioma, gastric, and colorectal origin. They include multimodal neoadjuvant treatment, surgical resection, and palliative care. The indication for and results of CRS HIPEC and PIPAC are discussed in light of the current literature. Institutional volume and clinical expertise required to achieve best outcomes are underlined, while inclusion of patients considered for CRS HIPEC and PIPAC in a clinical registry is strongly advised. The present recommendations are in line with current international guidelines and provide the first comprehensive treatment proposal for patients with PC including intraperitoneal chemotherapy. The SPCG comprehensive treatment algorithms provide evidence-based guidance for the multimodal care of patients with PC of gastrointestinal origin that were endorsed by all Swiss clinicians routinely involved in the multimodal care of these challenging patients

    Hiatushernie nach Ösophagusresektion: Inzidenz und chirurgische Therapie

    No full text

    Aussagekraft des 18F-FDG-PETs im Restaging nach neoadjuvanter Therapie des Ösophaguskarzinoms

    No full text

    Compact setup for spin-, time-, and angle-resolved photoemission spectroscopy

    No full text
    We present a compact setup for spin-, time-, and angle-resolved photoemission spectroscopy. A 10 kHz titanium sapphire laser system delivers pulses of 20 fs duration, which drive a high harmonic generation-based source for ultraviolet photons at 21 eV for photoemission. The same laser also excites the sample for pump–probe experiments. Emitted electrons pass through a hemispherical energy analyzer and a spin-filtering element. The latter is based on spin-polarized low-energy electron diffraction on an Au-passivated iridium crystal. The performance of the measurement system is discussed in terms of the resolution and efficiency of the spin filter, which are higher than those for Mott-based techniques
    corecore