1,175 research outputs found

    RdgB2 is required for dim-light input into intrinsically photosensitive retinal ganglion cells.

    Get PDF
    A subset of retinal ganglion cells is intrinsically photosensitive (ipRGCs) and contributes directly to the pupillary light reflex and circadian photoentrainment under bright-light conditions. ipRGCs are also indirectly activated by light through cellular circuits initiated in rods and cones. A mammalian homologue (RdgB2) of a phosphoinositide transfer/exchange protein that functions in Drosophila phototransduction is expressed in the retinal ganglion cell layer. This raised the possibility that RdgB2 might function in the intrinsic light response in ipRGCs, which depends on a cascade reminiscent of Drosophila phototransduction. Here we found that under high light intensities, RdgB2(-/-) mutant mice showed normal pupillary light responses and circadian photoentrainment. Consistent with this behavioral phenotype, the intrinsic light responses of ipRGCs in RdgB2(-/-) were indistinguishable from wild-type. In contrast, under low-light conditions, RdgB2(-/-) mutants displayed defects in both circadian photoentrainment and the pupillary light response. The RdgB2 protein was not expressed in ipRGCs but was in GABAergic amacrine cells, which provided inhibitory feedback onto bipolar cells. We propose that RdgB2 is required in a cellular circuit that transduces light input from rods to bipolar cells that are coupled to GABAergic amacrine cells and ultimately to ipRGCs, thereby enabling ipRGCs to respond to dim light

    Strongly residual coordinates over A[x]

    Full text link
    For a domain A of characteristic zero, a polynomial f over A[x] is called a strongly residual coordinate if f becomes a coordinate (over A) upon going modulo x, and f becomes a coordinate upon inverting x. We study the question of when a strongly residual coordinate is a coordinate, a question closely related to the Dolgachev-Weisfeiler conjecture. It is known that all strongly residual coordinates are coordinates for n=2 . We show that a large class of strongly residual coordinates that are generated by elementaries upon inverting x are in fact coordinates for arbitrary n, with a stronger result in the n=3 case. As an application, we show that all Venereau-type polynomials are 1-stable coordinates.Comment: 15 pages. Some minor clarifications and notational improvements from the first versio

    Collapse-and-revival dynamics of strongly laser-driven electrons

    Full text link
    The relativistic quantum dynamics of an electron in an intense single-mode quantized electromagnetic field is investigated with special emphasis on the spin degree of freedom. In addition to fast spin oscillations at the laser frequency, a second time scale is identified due to the intensity dependent emissions and absorptions of field quanta. In analogy to the well-known phenomenon in atoms at moderate laser intensity, we put forward the conditions of collapses and revivals for the spin evolution in laser-driven electrons starting at feasible 101810^{18} W/cm2^2.Comment: 18 pages, 4 figure

    Multiphoton Ionization as Time-Dependent Tunneling

    Get PDF
    A new semiclassical approach to ionization by an oscillating field is presented. For a delta-function atom, an asymptotic analysis is performed with respect to a quantity h, defined as the ratio of photon energy to ponderomotive energy. This h appears formally equivalent to Planck's constant in a suitably transformed Schroedinger equation and allows semiclassical methods to be applicable. Systematically, a picture of tunneling wave packets in complex time is developped, which by interference account for the typical ponderomotive features of ionization curves. These analytical results are then compared to numerical simulations and are shown to be in good agreement.Comment: 36 pages (also printable half size), uuencoded compressed tarred Latex file with 9 Postscript figures included automaticall

    Recognition of Facial Expressions by Cortical Multi-scale Line and Edge Coding

    Get PDF
    Face-to-face communications between humans involve emotions, which often are unconsciously conveyed by facial expressions and body gestures. Intelligent human-machine interfaces, for example in cognitive robotics, need to recognize emotions. This paper addresses facial expressions and their neural correlates on the basis of a model of the visual cortex: the multi-scale line and edge coding. The recognition model links the cortical representation with Paul Ekman's Action Units which are related to the different facial muscles. The model applies a top-down categorization with trends and magnitudes of displacements of the mouth and eyebrows based on expected displacements relative to a neutral expression. The happy vs. not-happy categorization yielded a. correct recognition rate of 91%, whereas final recognition of the six expressions happy, anger, disgust, fear, sadness and surprise resulted in a. rate of 78%

    "Handling Updates and Crashes in VoD Systems"

    Get PDF
    Though there have been several recent efforts to develop disk based video servers, these approaches have all ignored the topic of updates and disk server crashes. In this paper, we present a priority based model for building video servers that handle two classes of events: user events that could include enter, play, pause, rewind, fast-forward, exit, as well as system events such as insert, delete, server-down, server-up that correspond to uploading new movie blocks onto the disk(s), eliminating existing blocks from the disk(s), and/or experiencing a disk server crash. We will present algorithms to handle such events. Our algorithms are provably correct, and computable in polynomial time. Furthermore, we guarantee that under certain reasonable conditions, continuing clients experience jitter free presentations. We further justify the efficiency of our techniques with a prototype implementation and experimental results. (Also cross-referenced as UMIACS-TR-97-47

    Clinical disorders affecting mesopic vision

    Get PDF
    Vision in the mesopic range is affected by a number of inherited and acquired clinical disorders. We review these conditions and summarize the historical background, describing the clinical characteristics alongside the genetic basis and molecular biological mechanisms giving rise to rod and cone dysfunction relevant to twilight vision. The current diagnostic gold standards for each disease are discussed and curative and symptomatic treatment strategies are summarized

    Tomography of Electrospun Carbon Nanotube Polymeric Blends by Focus Ion Beam: Alignment and Phase Separation Analysis from Multicontrast Electron Imaging

    Get PDF
    © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Multimodal focused ion beam (FIB) imaging on a polydimethylsiloxane/poly(methyl methacrylate) (PMMA)/multiwall carbon nanotube (MWCNT) electrospun composite has been applied to discriminate the phase-separated polymer blend and identify MWCNT fillers. Upon tomographic reconstruction, this discrimination has been possible through both atomic number and voltage contrast, the latter being enabled by preferential MWCNT segregation to PMMA. This study suggests that electrospinning could be affecting not only MWCNT alignment but also phase separation dynamics of immiscible polymers, yielding a porous structure throughout the fibers. This work opens the door to correlative materials science in polymer nanocomposites through FIB tomography, where voltage contrast is a main actor. (Figure presented.)

    Real-Time Cleaning and Refinement of Facial Animation Signals

    Full text link
    With the increasing demand for real-time animated 3D content in the entertainment industry and beyond, performance-based animation has garnered interest among both academic and industrial communities. While recent solutions for motion-capture animation have achieved impressive results, handmade post-processing is often needed, as the generated animations often contain artifacts. Existing real-time motion capture solutions have opted for standard signal processing methods to strengthen temporal coherence of the resulting animations and remove inaccuracies. While these methods produce smooth results, they inherently filter-out part of the dynamics of facial motion, such as high frequency transient movements. In this work, we propose a real-time animation refining system that preserves -- or even restores -- the natural dynamics of facial motions. To do so, we leverage an off-the-shelf recurrent neural network architecture that learns proper facial dynamics patterns on clean animation data. We parametrize our system using the temporal derivatives of the signal, enabling our network to process animations at any framerate. Qualitative results show that our system is able to retrieve natural motion signals from noisy or degraded input animation.Comment: ICGSP 2020: Proceedings of the 2020 The 4th International Conference on Graphics and Signal Processin

    Hyperpolarization-Activated Current (Ih) in Ganglion-Cell Photoreceptors

    Get PDF
    Intrinsically photosensitive retinal ganglion cells (ipRGCs) express the photopigment melanopsin and serve as the primary retinal drivers of non-image-forming visual functions such as circadian photoentrainment, the pupillary light reflex, and suppression of melatonin production in the pineal. Past electrophysiological studies of these cells have focused on their intrinsic photosensitivity and synaptic inputs. Much less is known about their voltage-gated channels and how these might shape their output to non-image-forming visual centers. Here, we show that rat ipRGCs retrolabeled from the suprachiasmatic nucleus (SCN) express a hyperpolarization-activated inwardly-rectifying current (Ih). This current is blocked by the known Ih blockers ZD7288 and extracellular cesium. As in other systems, including other retinal ganglion cells, Ih in ipRGCs is characterized by slow kinetics and a slightly greater permeability for K+ than for Na+. Unlike in other systems, however, Ih in ipRGCs apparently does not actively contribute to resting membrane potential. We also explore non-specific effects of the common Ih blocker ZD7288 on rebound depolarization and evoked spiking and discuss possible functional roles of Ih in non-image-forming vision. This study is the first to characterize Ih in a well-defined population of retinal ganglion cells, namely SCN-projecting ipRGCs
    corecore