12 research outputs found

    A functional trait perspective on plant invasion

    Get PDF
    Global environmental change will affect non-native plant invasions, with profound potential impacts on native plant populations, communities and ecosystems. In this context, we review plant functional traits, particularly those that drive invader abundance (invasiveness) and impacts, as well as the integration of these traitsacross multiple ecological scales, and as a basis for restoration and management.We review the concepts and terminology surrounding functional traits and how functional traits influence processes at the individual level. We explore how phenotypic plasticity may lead to rapid evolution of novel traits facilitating invasiveness in changing environments and then oscale up\u27 to evaluate the relative importance of demographic traits and their links to invasion rates. We then suggest a functional trait framework for assessing per capita effects and, ultimately, impacts of invasive plants on plant communities and ecosystems. Lastly, we focus on the role of functional trait-based approaches in invasive species management and restoration in the context of rapid, global environmental change.To understand how the abundance and impacts of invasive plants will respond to rapid environmental changes it is essential to link trait-based responses of invaders to changes in community and ecosystem properties. To do so requires a comprehensive effort that considers dynamic environmental controls and a targeted approach to understand key functional traits driving both invader abundance and impacts. If we are to predict future invasions, manage those at hand and use restoration technology to mitigate invasive species impacts, future research must focus on functional traits that promote invasiveness and invader impacts under changing conditions, and integrate major factors driving invasions from individual to ecosystem levels

    Non-Additive Effects on Decomposition from Mixing Litter of the Invasive Mikania micrantha H.B.K. with Native Plants

    Get PDF
    A common hypothesis to explain the effect of litter mixing is based on the difference in litter N content between mixed species. Although many studies have shown that litter of invasive non-native plants typically has higher N content than that of native plants in the communities they invade, there has been surprisingly little study of mixing effects during plant invasions. We address this question in south China where Mikania micrantha H.B.K., a non-native vine, with high litter N content, has invaded many forested ecosystems. We were specifically interested in whether this invader accelerated decomposition and how the strength of the litter mixing effect changes with the degree of invasion and over time during litter decomposition. Using litterbags, we evaluated the effect of mixing litter of M. micrantha with the litter of 7 native resident plants, at 3 ratios: M1 (1:4, = exotic:native litter), M2 (1:1) and M3 (4:1, = exotic:native litter) over three incubation periods. We compared mixed litter with unmixed litter of the native species to identify if a non-additive effect of mixing litter existed. We found that there were positive significant non-additive effects of litter mixing on both mass loss and nutrient release. These effects changed with native species identity, mixture ratio and decay times. Overall the greatest accelerations of mixture decay and N release tended to be in the highest degree of invasion (mix ratio M3) and during the middle and final measured stages of decomposition. Contrary to expectations, the initial difference in litter N did not explain species differences in the effect of mixing but overall it appears that invasion by M. micrantha is accelerating the decomposition of native species litter. This effect on a fundamental ecosystem process could contribute to higher rates of nutrient turnover in invaded ecosystems. © 2013 Chen et al

    Integrated Assessment of Biological Invasions

    Get PDF
    As the main witnesses of the ecological and economic impacts of invasions on ecosystems around the world, ecologists seek to provide the relevant science that informs managers about the potential for invasion of specific organisms in their region(s) of interest. Yet, the assorted literature that could inform such forecasts is rarely integrated to do so, and further, the diverse nature of the data available complicates synthesis and quantitative prediction. Here we present a set of analytical tools for synthesizing different levels of distributional and/or demographic data to produce meaningful assessments of invasion potential that can guide management at multiple phases of ongoing invasions, from dispersal to colonization to proliferation. We illustrate the utility of data-synthesis and data-model assimilation approaches with case studies of three well-known invasive species—a vine, a marine mussel, and a freshwater crayfish—under current and projected future climatic conditions. Results from the integrated assessments reflect the complexity of the invasion process and show that the most relevant climatic variables can have contrasting effects or operate at different intensities across habitat types. As a consequence, for two of the study species climate trends will increase the likelihood of invasion in some habitats and decrease it in others. Our results identified and quantified both bottlenecks and windows of opportunity for invasion, mainly related to the role of human uses of the landscape or to disruption of the flow of resources. The approach we describe has a high potential to enhance model realism, explanatory insight, and predictive capability, generating information that can inform management decisions and optimize phase-specific prevention and control efforts for a wide range of biological invasions

    Will Extreme Climatic Events Facilitate Biological Invasions?

    Get PDF
    Extreme climatic events (ECEs) – such as unusual heat waves, hurricanes, floods, and droughts – can dramatically affect ecological and evolutionary processes, and these events are projected to become more frequent and more intense with ongoing climate change. However, the implications of ECEs for biological invasions remain poorly understood. Using concepts and empirical evidence from invasion ecology, we identify mechanisms by which ECEs may influence the invasion process, from initial introduction through establishment and spread. We summarize how ECEs can enhance invasions by promoting the transport of propagules into new regions, by decreasing the resistance of native communities to establishment, and also sometimes by putting existing non-native species at a competitive disadvantage. Finally, we outline priority research areas and management approaches for anticipating future risks of unwanted invasions following ECEs. Given predicted increases in both ECE occurrence and rates of species introductions around the globe during the coming decades, there is an urgent need to understand how these two processes interact to affect ecosystem composition and functioning

    Nitrogen Increases Early-Stage and Slows Late-Stage Decomposition Across Diverse Grasslands

    Get PDF
    To evaluate how increased anthropogenic nutrient inputs alter carbon cycling in grasslands, we conducted a litter decomposition study across 20 temperate grasslands on three continents within the Nutrient Network, a globally distributed nutrient enrichment experiment We determined the effects of addition of experimental nitrogen (N), phosphorus (P) and potassium plus micronutrient (Kμ) on decomposition of a common tree leaf litter in a long-term study (maximum of 7 years; exact deployment period varied across sites). The use of higher order decomposition models allowed us to distinguish between the effects of nutrients on early- versus late-stage decomposition. Across continents, the addition of N (but not other nutrients) accelerated early-stage decomposition and slowed late-stage decomposition, increasing the slowly decomposing fraction by 28% and the overall litter mean residence time by 58%. Synthesis. Using a novel, long-term cross-site experiment, we found widespread evidence that N enhances the early stages of above-ground plant litter decomposition across diverse and widespread temperate grassland sites but slows late-stage decomposition. These findings were corroborated by fitting the data to multiple decomposition models and have implications for N effects on soil organic matter formation. For example, following N enrichment, increased microbial processing of litter substrates early in decomposition could promote the production and transfer of low molecular weight compounds to soils and potentially enhance the stabilization of mineral-associated organic matter. By contrast, by slowing late-stage decomposition, N enrichment could promote particulate organic matter (POM) accumulation. Such hypotheses deserve further testing

    Understory Succession Following a Dieback of \u3ci\u3eMyrica faya\u3c/i\u3e in Hawai’i Volcanoes National Park

    Get PDF
    Studies of invasion by the introduced nitrogen-fixing tree Myrica faya Aiton in Hawai\u27i Volcanoes National Park have led to predictions that the nitrogen-rich soil M. faya creates will promote invasion by nonindigenous plant species. An insect-caused dieback of M. faya that began in the late 1980s provides an opportunity to test this hypothesis. We compared· percentage cover and density of all plant species under live and dead M. faya, as well as total nitrogen in soil and plant tissue. Mean percentage cover of four common species increased significantly, and no species decreased in cover after dieback. Cover of native shrubs and herbs increased from 4.8 to 15.2%, largely due to the spread of Carex wahuensis C.A. Mey, and introduced grasses increased from 2.3 to 14.1%. Density of native shrubs did not differ beneath live and dead M. faya, but immature introduced grass individuals were significantly more numerous beneath dead M. faya. We found no differences in total nitrogen in soil or plant tissue collected beneath live versus dead M. faya. Beneath dead M. faya, cover of C. wahuensis increased with total soil N, and introduced grass cover decreased. This surprising result may be the legacy of shading effects from the live M. faya canopies, for which total soil N may be an indicator. Success of grass seedlings compared with failure of native shrubs to recruit from seed suggests that dieback promotes nonnative grass species. Replacement of M. faya with introduced grasses may greatly increase fire risk

    SHRUB FACILITATION OF COAST LIVE OAK ESTABLISHMENT IN CENTRAL CALIFORNIA

    No full text
    Volume: 38Start Page: 158End Page: 16

    Keys to Enhancing the Value of Invasion Ecology Research for Management

    No full text
    Invasion ecology has grown to include scientists with diverse skill sets who focus on a range of taxa and biomes. These researchers have the capacity to contribute to practical management solutions while also answering fundamental biological questions; however, scientific endeavors often fail to meet the perceived needs of practitioners involved in on-the-ground invasive plant management. One way that researchers have sought to bridge the gap between research and practice is by surveying managers to identify areas of study that are underexplored in invasion ecology. In this paper, we build on these efforts by reviewing the current state of knowledge and suggesting new directions for research in seven areas of plant invasion ecology that are highly relevant to management: seedbanks, dispersal and spread, life history, impacts, climate change, distribution, and succession. These topics were previously identified as urgent research priorities by land managers and are underrepresented in the invasion ecology literature. In addition to highlighting key knowledge gaps for these seven areas of research, we propose steps that academics can take to cultivate academic–practitioner relationships and remove barriers to conducting management-focused research, such as co-producing research questions with managers, addressing issues of working at management-appropriate spatial and temporal scales, and considering non-traditional funding and labor sources for long-term monitoring. Greater communication and collaborative selection of basic research questions will ensure that the goals of management and invasive species research remain aligned

    A Functional Trait Perspective on Plant Invasion

    No full text
    Background and Aims: Global environmental change will affect non-native plant invasions, with profound potential impacts on native plant populations, communities and ecosystems. In this context, we review plant functional traits, particularly those that drive invader abundance (invasiveness) and impacts, as well as the integration of these traits across multiple ecological scales, and as a basis for restoration and management.Scope: We review the concepts and terminology surrounding functional traits and how functional traits influence processes at the individual level. We explore how phenotypic plasticity may lead to rapid evolution of novel traits facilitating invasiveness in changing environments and then ‘scale up’ to evaluate the relative importance of demographic traits and their links to invasion rates. We then suggest a functional trait framework for assessing per capita effects and, ultimately, impacts of invasive plants on plant communities and ecosystems. Lastly, we focus on the role of functional trait-based approaches in invasive species management and restoration in the context of rapid, global environmental change.Conclusions: To understand how the abundance and impacts of invasive plants will respond to rapid environmental changes it is essential to link trait-based responses of invaders to changes in community and ecosystem properties. To do so requires a comprehensive effort that considers dynamic environmental controls and a targeted approach to understand key functional traits driving both invader abundance and impacts. If we are to predict future invasions, manage those at hand and use restoration technology to mitigate invasive species impacts, future research must focus on functional traits that promote invasiveness and invader impacts under changing conditions, and integrate major factors driving invasions from individual to ecosystem levels
    corecore