8 research outputs found

    Epigenetic control of the basal-like gene expression profile via Interleukin-6 in breast cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Basal-like carcinoma are aggressive breast cancers that frequently carry p53 inactivating mutations, lack estrogen receptor-α (ERα) and express the cancer stem cell markers CD133 and CD44. These tumors also over-express Interleukin 6 (IL-6), a pro-inflammatory cytokine that stimulates the growth of breast cancer stem/progenitor cells.</p> <p>Results</p> <p>Here we show that p53 deficiency in breast cancer cells induces a loss of methylation at <it>IL-6 </it>proximal promoter region, which is maintained by an IL-6 autocrine loop. IL-6 also elicits the loss of methylation at the <it>CD133 </it>promoter region 1 and of <it>CD44 </it>proximal promoter, enhancing <it>CD133 </it>and <it>CD44 </it>gene transcription. In parallel, IL-6 induces the methylation of estrogen receptor (ERα) promoter and the loss of ERα mRNA expression. Finally, IL-6 induces the methylation of <it>IL-6 </it>distal promoter and of <it>CD133 </it>promoter region 2, which harbour putative repressor regions.</p> <p>Conclusion</p> <p>We conclude that IL-6, whose methylation-dependent autocrine loop is triggered by the inactivation of p53, induces an epigenetic reprogramming that drives breast carcinoma cells towards a basal-like/stem cell-like gene expression profile.</p

    Cardiotoxicity of Anticancer Drugs: Molecular Mechanisms and Strategies for Cardioprotection

    Get PDF
    Chemotherapy and targeted therapies have significantly improved the prognosis of oncology patients. However, these antineoplastic treatments may also induce adverse cardiovascular effects, which may lead to acute or delayed onset of cardiac dysfunction. These common cardiovascular complications, commonly referred to as cardiotoxicity, not only may require the modification, suspension, or withdrawal of life-saving antineoplastic therapies, with the risk of reducing their efficacy, but can also strongly impact the quality of life and overall survival, regardless of the oncological prognosis. The onset of cardiotoxicity may depend on the class, dose, route, and duration of administration of anticancer drugs, as well as on individual risk factors. Importantly, the cardiotoxic side effects may be reversible, if cardiac function is restored upon discontinuation of the therapy, or irreversible, characterized by injury and loss of cardiac muscle cells. Subclinical myocardial dysfunction induced by anticancer therapies may also subsequently evolve in symptomatic congestive heart failure. Hence, there is an urgent need for cardioprotective therapies to reduce the clinical and subclinical cardiotoxicity onset and progression and to limit the acute or chronic manifestation of cardiac damages. In this review, we summarize the knowledge regarding the cellular and molecular mechanisms contributing to the onset of cardiotoxicity associated with common classes of chemotherapy and targeted therapy drugs. Furthermore, we describe and discuss current and potential strategies to cope with the cardiotoxic side effects as well as cardioprotective preventive approaches that may be useful to flank anticancer therapies

    The key roles of ERBB2 in cardiac regeneration

    No full text

    Hop derived flavonoid xanthohumol inhibits endothelial cell functions via AMPK activation

    No full text
    Angiogenesis, a process characterized by the formation of new blood vessels from pre-existing ones, is a crucial step in tumor growth and dissemination. Recently, increased attention has been addressed to the ability of flavonoids to prevent cancer by suppressing angiogenesis, strategy that we named "angioprevention". Several natural compounds exert their anti-tumor properties by activating 5' adenosine monophosphate-activated protein kinase (AMPK), a key regulator of metabolism in cancer cells. Drugs with angiopreventive activities, in particular metformin, regulate AMPK in endothelial cells. Here we investigated the involvement of AMPK in the anti-angiogenic effects of xanthohumol (XN), the major prenylated flavonoid of the hop plant, and mechanisms of action. The anti-angiogenic activity of XN was more potent than epigallocatechin-3-gallate (EGCG). Treatment of endothelial cells with XN led to increased AMPK phosphorylation and activity. Functional studies using biochemical approaches confirmed that AMPK mediates XN anti-angiogenic activity. AMPK activation by XN was mediated by CAMMK\u3b2, but not LKB1. Analysis of the downstream mechanisms showed that XN-induced AMPK activation reduced nitric oxide (NO) levels in endothelial cells by decreasing eNOS phosphorylation. Finally, AKT pathway was inactivated by XN as part of its anti-angiogenic activity, but independently from AMPK, suggesting that these two signaling pathways proceed autonomously. Our study dissects the molecular mechanism by which XN exerts its potent anti-angiogenic activity, pointing out AMPK as a crucial signal transducer

    Neonatal Apex Resection Triggers Cardiomyocyte Proliferation, Neovascularization and Functional Recovery Despite Local Fibrosis

    Get PDF
    Summary: So far, opposing outcomes have been reported following neonatal apex resection in mice, questioning the validity of this injury model to investigate regenerative mechanisms. We performed a systematic evaluation, up to 180 days after surgery, of the pathophysiological events activated upon apex resection. In response to cardiac injury, we observed increased cardiomyocyte proliferation in remote and apex regions, neovascularization, and local fibrosis. In adulthood, resected hearts remain consistently shorter and display permanent fibrotic tissue deposition in the center of the resection plane, indicating limited apex regrowth. However, thickening of the left ventricle wall, explained by an upsurge in cardiomyocyte proliferation during the initial response to injury, compensated cardiomyocyte loss and supported normal systolic function. Thus, apex resection triggers both regenerative and reparative mechanisms, endorsing this injury model for studies aimed at promoting cardiomyocyte proliferation and/or downplaying fibrosis. : In this article, Nascimento and colleagues demonstrate that neonatal apex resection stimulates cardiomyocyte proliferation and permanent scarring in the apex. Newly formed cardiomyocytes compensate muscle loss by resection, and resected hearts recover functional competence in adulthood. These findings endorse this model for studies aiming to block cardiac fibrosis and/or favoring CM proliferation. Keywords: neonatal apex resection, cardiac regeneration, cardiac injury response, cardiomyocyte proliferation, fibrosis, cardiac fibroblasts, extracellular matrix, neovascularization, stereolog
    corecore