43 research outputs found

    Current millennium biotechniques for biomedical research on parasites and host-parasite interactions

    Get PDF
    The development of biotechnology in the last three decades has generated the feeling that the newest scientific achievements will deliver high standard quality of life through abundance of food and means for successfully combating diseases. Where the new biotechnologies give access to genetic information, there is a common belief that physiological and pathological processes result from subtle modifications of gene expression. Trustfully, modern genetics has produced genetic maps, physical maps and complete nucleotide sequences from 141 viruses, 51 organelles, two eubacteria, one archeon and one eukaryote (Saccharomices cerevisiae). In addition, during the Centennial Commemoration of the Oswaldo Cruz Institute the nearly complete human genome map was proudly announced, whereas the latest Brazilian key stone contribution to science was the publication of the Shillela fastidiosa genomic sequence highlythed on a Nature cover issue. There exists a belief among the populace that further scientific accomplishments will rapidly lead to new drugs and methodological approaches to cure genetic diseases and other incurable ailments. Yet, much evidence has been accumulated, showing that a large information gap exists between the knowledge of genome sequence and our knowledge of genome function. Now that many genome maps are available, people wish to know what are we going to do with them. Certainly, all these scientific accomplishments will shed light on many more secrets of life. Nevertheless, parsimony in the weekly announcements of promising scientific achievements is necessary. We also need many more creative experimental biologists to discover new, as yet un-envisaged biotechnological approaches, and the basic resource needed for carrying out mile stone research necessary for leading us to that "promised land"often proclaimed by the mass media

    Hitchhiking Trypanosoma cruzi minicircle DNA affects gene expression in human host cells via LINE-1 retrotransposon

    Get PDF
    The horizontal transfer of Trypanosoma cruzi mitochondrial minicircle DNA to the genomes of naturally infected humans may play an important role in the pathogenesis of Chagas disease. Minicircle integrations within LINE-1 elements create the potential for foreign DNA mobility within the host genome via the machinery associated with this retrotransposon. Here we document integration of minicircle DNA fragments in clonal human macrophage cell lines and their mobilization over time. The movement of an integration event in a clonal transfected cell line was tracked at three months and three years post-infection. The minicircle sequence integrated into a LINE-1 retrotransposon; one such foreign fragment subsequently relocated to another genomic location in association with associated LINE-1 elements. The p15 locus was altered at three years as a direct effect of minicircle/LINE-1 acquisition, resulting in elimination of p15 mRNA. Here we show for the first time a molecular pathology stemming from mobilization of a kDNA/LINE-1 mutation. These genomic changes and detected transcript variations are consistent with our hypothesis that minicircle integration is a causal component of parasite-independent, autoimmune-driven lesions seen in the heart and other target tissues associated with Chagas disease

    Human papillomavirus-mediated carcinogenesis and HPV-associated oral and oropharyngeal squamous cell carcinoma. Part 2: Human papillomavirus associated oral and oropharyngeal squamous cell carcinoma

    Get PDF
    Human papillomavirus (HPV) infection of the mouth and oropharynx can be acquired by a variety of sexual and social forms of transmission. HPV-16 genotype is present in many oral and oropharyngeal squamous cell carcinomata. It has an essential aetiologic role in the development of oropharyngeal squamous cell carcinoma in a subset of subjects who are typically younger, are more engaged with high-risk sexual behaviour, have higher HPV-16 serum antibody titer, use less tobacco and have better survival rates than in subjects with HPV-cytonegative oropharyngeal squamous cell carcinoma. In this subset of subjects the HPV-cytopositive carcinomatous cells have a distinct molecular profile

    Triatoma infestans Apyrases Belong to the 5′-Nucleotidase Family

    No full text
    International audienceApyrases are nucleoside triphosphate-diphosphohydrolases (EC 3.6.1.5) present in a variety of organisms. The apyrase activity found in the saliva of hematophagous insects is correlated with the prevention of ADP-induced platelet aggregation of the host during blood sucking. Purification of apyrase activity from the saliva of the triatomine bug Triatoma infestans was achieved by affinity chromatography on oligo(dT)-cellulose and gel filtration chromatography. The isolated fraction includes five N-glycosylated polypeptides of 88, 82, 79, 68 and 67 kDa apparent molecular masses. The isolated apyrase mixture completely inhibited aggregation of human blood platelets. Labeling with the ATP substrate analogue 5'-p-fluorosulfonylbenzoyladenosine showed that the five species have ATP-binding characteristic of functional apyrases. Furthermore, tandem mass spectroscopy peptide sequencing showed that the five species share sequence similarities with the apyrase from Aedes aegypti and with 5'-nucleotidases from other species. The complete cDNA of the 79-kDa enzyme was cloned, and its sequence confirmed that it encodes for an apyrase belonging to the 5'-nucleotidase family. The gene multiplication leading to the unusual salivary apyrase diversity in T. infestans could represent an important mechanism amplifying the enzyme expression during the insect evolution to hematophagy, in addition to an escape from the host immune response, thus enhancing acquisition of a meal by this triatomine vector of Chagas' disease

    RETRACTED: Heritable Integration of kDNA Minicircle Sequences from Trypanosoma cruzi into the Avian Genome: Insights into Human Chagas Disease

    Get PDF
    AbstractThis article has been retracted at the request of the Editors:Reason: “It has been brought to our attention that there are concerns with the integration site sequence analyses provided in support of integration of T. cruzi kDNA into the host genome in this paper. Following careful and extensive review of the data by independent experts in the field, we are forced to conclude that the sequence analyses associated with publication do not provide strong evidence for the central hypothesis and are open to alternative intepretations. The Southern blot analyses, while consistent with integration, do not in themselves provide sufficiently strong support for the main conclusion. We are therefore retracting the paper. The authors of the paper stand by the original data and do not endorse the retraction.
    corecore