421 research outputs found

    Pharmacokinetics of the cyclosporine-ketoconazole interaction in dogs

    Get PDF
    Numerous clinical reports have documented an increase in trough blood concentrations of cyclosporine in transplant recipients treated concomitantly with ketoconazole. The objective of this study was to elucidate the mechanism(s) underlying the cyclosporine-ketoconazole interaction using a choledochoureterostomy dog model. Five male beagle dogs received a 4 mg/kg, i.v. bolus dose of cyclosporine either alone or on day seven of a 10-day, 13 mg/kg/day, oral dosing regimen of ketoconazole. Blood samples were collected prior to and at predetermined times for 60 hrs after the cyclosporine dose, while the bile/urine mixture was collected quantitatively for 96 hours after the cyclosporine dose. Ketoconazole decreased the systemic clearance of cyclosporine from 7.0 ml/min/kg to 2.5 ml/min/kg. The terminal disposition rate constant was also decreased significantly from 0.0794 to 0.0354 hrs-1. Ketoconazole caused no significant changes in cyclosporine steady state volume of distribution, or plasma unbound fraction. Ketoconazole did not significantly alter the excretion of cyclosporine and various cyclosporine metabolites in the bile/urine mixture. Inhibition of hepatic drug metabolizing enzymes appears to be the primary reason for the ketoconazole induced elevation in cyclosporine concentration

    Neurocognitive mechanisms of co‐occurring math difficulties in dyslexia: Differences in executive function and visuospatial processing

    Get PDF
    Children with dyslexia frequently also struggle with math. However, studies of reading disability (RD) rarely assess math skill, and the neurocognitive mechanisms underlying co-occurring reading and math disability (RD+MD) are not clear. The current study aimed to identify behavioral and neurocognitive factors associated with co-occurring MD among 86 children with RD. Within this sample, 43% had co-occurring RD+MD and 22% demonstrated a possible vulnerability in math, while 35% had no math difficulties (RD-Only). We investigated whether RD-Only and RD+MD students differed behaviorally in their phonological awareness, reading skills, or executive functions, as well as in the brain mechanisms underlying word reading and visuospatial working memory using functional magnetic resonance imaging (fMRI). The RD+MD group did not differ from RD-Only on behavioral or brain measures of phonological awareness related to speech or print. However, the RD+MD group demonstrated significantly worse working memory and processing speed performance than the RD-Only group. The RD+MD group also exhibited reduced brain activations for visuospatial working memory relative to RD-Only. Exploratory brain-behavior correlations along a broad spectrum of math ability revealed that stronger math skills were associated with greater activation in bilateral visual cortex. These converging neuro-behavioral findings suggest that poor executive functions in general, including differences in visuospatial working memory, are specifically associated with co-occurring MD in the context of RD

    Trim17, novel E3 ubiquitin-ligase, initiates neuronal apoptosis

    Get PDF
    Accumulating data indicate that the ubiquitin-proteasome system controls apoptosis by regulating the level and the function of key regulatory proteins. In this study, we identified Trim17, a member of the TRIM/RBCC protein family, as one of the critical E3 ubiquitin ligases involved in the control of neuronal apoptosis upstream of mitochondria. We show that expression of Trim17 is increased both at the mRNA and protein level in several in vitro models of transcription-dependent neuronal apoptosis. Expression of Trim17 is controlled by the PI3K/Akt/GSK3 pathway in cerebellar granule neurons (CGN). Moreover, the Trim17 protein is expressed in vivo, in apoptotic neurons that naturally die during post-natal cerebellar development. Overexpression of active Trim17 in primary CGN was sufficient to induce the intrinsic pathway of apoptosis in survival conditions. This pro-apoptotic effect was abolished in Bax(-/-) neurons and depended on the E3 activity of Trim17 conferred by its RING domain. Furthermore, knock-down of endogenous Trim17 and overexpression of dominant-negative mutants of Trim17 blocked trophic factor withdrawal-induced apoptosis both in CGN and in sympathetic neurons. Collectively, our data are the first to assign a cellular function to Trim17 by showing that its E3 activity is both necessary and sufficient for the initiation of neuronal apoptosis. Cell Death and Differentiation (2010) 17, 1928-1941; doi: 10.1038/cdd.2010.73; published online 18 June 201

    TLR7-mediated skin inflammation remotely triggers chemokine expression and leukocyte accumulation in the brain

    Get PDF
    Background: The relationship between the brain and the immune system has become increasingly topical as, although it is immune-specialised, the CNS is not free from the influences of the immune system. Recent data indicate that peripheral immune stimulation can significantly affect the CNS. But the mechanisms underpinning this relationship remain unclear. The standard approach to understanding this relationship has relied on systemic immune activation using bacterial components, finding that immune mediators, such as cytokines, can have a significant effect on brain function and behaviour. More rarely have studies used disease models that are representative of human disorders. Methods: Here we use a well-characterised animal model of psoriasis-like skin inflammation—imiquimod—to investigate the effects of tissue-specific peripheral inflammation on the brain. We used full genome array, flow cytometry analysis of immune cell infiltration, doublecortin staining for neural precursor cells and a behavioural read-out exploiting natural burrowing behaviour. Results: We found that a number of genes are upregulated in the brain following treatment, amongst which is a subset of inflammatory chemokines (CCL3, CCL5, CCL9, CXCL10, CXCL13, CXCL16 and CCR5). Strikingly, this model induced the infiltration of a number of immune cell subsets into the brain parenchyma, including T cells, NK cells and myeloid cells, along with a reduction in neurogenesis and a suppression of burrowing activity. Conclusions: These findings demonstrate that cutaneous, peripheral immune stimulation is associated with significant leukocyte infiltration into the brain and suggest that chemokines may be amongst the key mediators driving this response

    Re-programming mouse liver-resident invariant natural killer T cells for suppressing hepatic and diabetogenic autoimmunity

    Full text link
    Invariant NKT (iNKT) cells comprise a heterogeneous group of non-circulating, tissue-resident T lymphocytes that recognize glycolipids, including alpha-galactosylceramide (?GalCer), in the context of CD1d, but whether peripheral iNKT cell subsets are terminally differentiated remains unclear. Here we show that mouse and human liver-resident ?GalCer/CD1d-binding iNKTs largely correspond to a novel Zbtb16+Tbx21+Gata3+MaflowRorc- subset that exhibits profound transcriptional, phenotypic and functional plasticity. Repetitive in vivo encounters of these liver iNKT (LiNKT) cells with intravenously delivered ?GalCer/CD1d-coated nanoparticles (NP) trigger their differentiation into immunoregulatory, IL-10+IL-21-producing Zbtb16highMafhighTbx21+Gata3+Rorc- cells, termed LiNKTR1, expressing a T regulatory type 1 (TR1)-like transcriptional signature. This response is LiNKT-specific, since neither lung nor splenic tissue-resident iNKT cells from ?GalCer/CD1d-NP-treated mice produce IL-10 or IL-21. Additionally, these LiNKTR1 cells suppress autoantigen presentation, and recognize CD1d expressed on conventional B cells to induce IL-10+IL-35-producing regulatory B (Breg) cells, leading to the suppression of liver and pancreas autoimmunity. Our results thus suggest that LiNKT cells are plastic for further functional diversification, with such plasticity potentially targetable for suppressing tissue-specific inflammatory phenomena.© 2022. The Author(s)

    Developmental differences in the effects of repeated interviews and interviewer bias on young children's event memory and false reports.

    Get PDF
    The present study investigated developmental differences in the effects of repeated interviews and interviewer bias on children’s memory and suggestibility. Three- and 5-year-olds were singly or repeatedly interviewed about a play event by a highly biased or control interviewer. Children interviewed once by the biased interviewer after a long delay made the most errors. Children interviewed repeatedly, regardless of interviewer bias, were more accurate and less likely to falsely claim that they played with a man. In free recall, among children questioned once after a long delay by the biased interviewer, 5-year-olds were more likely than were 3-year-olds to claim falsely that they played with a man. However, in response to direct questions, 3-year-olds were more easily manipulated into implying that they played with him. Findings suggest that interviewer bias is particularly problematic when children’s memory has weakened. In contrast, repeated interviews that occur a short time after a to-be-remembered event do not necessarily increase children’s errors, even when interviews include misleading questions and interviewer bias. Implications for developmental differences in memory and suggestibility are discussed

    Consistency Analysis of Redundant Probe Sets on Affymetrix Three-Prime Expression Arrays and Applications to Differential mRNA Processing

    Get PDF
    Affymetrix three-prime expression microarrays contain thousands of redundant probe sets that interrogate different regions of the same gene. Differential expression analysis methods rarely consider probe redundancy, which can lead to inaccurate inference about overall gene expression or cause investigators to overlook potentially valuable information about differential regulation of variant mRNA products. We investigated the behaviour and consistency of redundant probe sets in a publicly-available data set containing samples from mouse brain amygdala and hippocampus and asked how applying filtering methods to the data affected consistency of results obtained from redundant probe sets. A genome-based filter that screens and groups probe sets according to their overlapping genomic alignments significantly improved redundant probe set consistency. Screening based on qualitative Present-Absent calls from MAS5 also improved consistency. However, even after applying these filters, many redundant probe sets showed significant fold-change differences relative to each other, suggesting differential regulation of alternative transcript production. Visual inspection of these loci using an interactive genome visualization tool (igb.bioviz.org) exposed thirty putative examples of differential regulation of alternative splicing or polyadenylation across brain regions in mouse. This work demonstrates how P/A-call and genome-based filtering can improve consistency among redundant probe sets while at the same time exposing possible differential regulation of RNA processing pathways across sample types

    Opposing Effects of Sirtuins on Neuronal Survival: SIRT1-Mediated Neuroprotection Is Independent of Its Deacetylase Activity

    Get PDF
    Background: Growing evidence suggests that sirtuins, a family of seven distinct NAD-dependent enzymes, are involved in the regulation of neuronal survival. Indeed, SIRT1 has been reported to protect against neuronal death, while SIRT2 promotes neurodegeneration. The effect of SIRTs 3–7 on the regulation of neuronal survival, if any, has yet to be reported. Methodology and Principal Findings: We examined the effect of expressing each of the seven SIRT proteins in healthy cerebellar granule neurons (CGNs) or in neurons induced to die by low potassium (LK) treatment. We report that SIRT1 protects neurons from LK-induced apoptosis, while SIRT2, SIRT3 and SIRT6 induce apoptosis in otherwise healthy neurons. SIRT5 is generally localized to both the nucleus and cytoplasm of CGNs and exerts a protective effect. In a subset of neurons, however, SIRT5 localizes to the mitochondria and in this case it promotes neuronal death. Interestingly, the protective effect of SIRT1 in neurons is not reduced by treatments with nicotinamide or sirtinol, two pharmacological inhibitors of SIRT1. Neuroprotection was also observed with two separate mutant forms of SIRT1, H363Y and H355A, both of which lack deacetylase activity. Furthermore, LK-induced neuronal death was not prevented by resveratrol, a pharmacological activator of SIRT1, at concentrations at which it activates SIRT1. We extended our analysis to HT-22 neuroblastoma cells which can be induced to die by homocysteic acid treatment. While the effects of most of the SIRT proteins were similar to that observed in CGNs, SIRT6 was modestly protective against homocysteic acid toxicity in HT-22 cells. SIRT5 was generally localized in th
    corecore