219 research outputs found

    Controllability in partial and uncertain environments

    Get PDF
    © 2014 IEEE.Controller synthesis is a well studied problem that attempts to automatically generate an operational behaviour model of the system-to-be that satisfies a given goal when deployed in a given domain model that behaves according to specified assumptions. A limitation of many controller synthesis techniques is that they require complete descriptions of the problem domain. This is limiting in the context of modern incremental development processes when a fully described problem domain is unavailable, undesirable or uneconomical. Previous work on Modal Transition Systems (MTS) control problems exists, however it is restricted to deterministic MTSs and deterministic Labelled Transition Systems (LTS) implementations. In this paper we study the Modal Transition System Control Problem in its full generality, allowing for nondeterministic MTSs modelling the environments behaviour and nondeterministic LTS implementations. Given an nondeterministic MTS we ask if all, none or some of the nondeterministic LTSs it describes admit an LTS controller that guarantees a given property. We show a technique that solves effectively the MTS realisability problem and it can be, in some cases, reduced to deterministic control problems. In all cases the MTS realisability problem is in same complexity class as the corresponding LTS problem

    Robust degradation and enhancement of robot mission behaviour in unpredictable environments

    Get PDF
    © 2015 ACM.Temporal logic based approaches that automatically generate controllers have been shown to be useful for mission level planning of motion, surveillance and navigation, among others. These approaches critically rely on the validity of the environment models used for synthesis. Yet simplifying assumptions are inevitable to reduce complexity and provide mission-level guarantees; no plan can guarantee results in a model of a world in which everything can go wrong. In this paper, we show how our approach, which reduces reliance on a single model by introducing a stack of models, can endow systems with incremental guarantees based on increasingly strengthened assumptions, supporting graceful degradation when the environment does not behave as expected, and progressive enhancement when it does

    Subtoxic levels of some heavy metals cause differential root-shoot structure, morphology and auxins levels in Arabidopsis thaliana

    Get PDF
    Contamination of soil by heavy metals severely affects plant growth and causes soil pollution. While effects on plant growth have been investigated for metals taken individually or in groups, less is known about their comparative effects. In this study Arabidopsis thaliana seedlings were grown for 14 days in Petri dishes containing medium contaminated by six common heavy metals (Hg, Cd, Pb, Cu, Ni and Zn), at the minimum concentrations defined as toxic by the most recent EU legislation on contamination of agricultural soils. (a) Root structure and morphology, (b) metal composition and translocation, and (c) the levels of indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) were analyzed. Metals accumulated more in roots than in shoots, with concentrations that differed by several orders of magnitude depending on the metal: Cd (ca. 700 × and ca. 450 × in roots and shoots, respectively), Hg (150 ×, 80 × ), Ni (50 ×, 20 × ), Cu (48 ×, 20 × ), Zn (23 ×, 6 × ), and Pb (9 ×, 4 × ). Responses were significant for at least nine of the ten root parameters (with the exception of Hg), and five of the six shoot parameters (with the exception of Zn). Cu and Zn induced respectively the strongest responses in root hormonal (up to ca. 240% the control values for IBA, 190% for IAA) and structural parameters (up to 210% for main root length, 330% for total lateral root length, 220% for number of root tips, 600% for total root surface, and from 2.5° to 26.0° of root growth angle). Regarding the shoots, the largest changes occurred for shoot height (down to 60% for Ni), rosette diameter (down to 45% for Hg), leaf number (up to 230% for Zn) and IBA (up to 240% for Pb and Cu). A microscope analysis revealed that shape and conformation of root hairs were strongly inhibited after Cd exposure, and enhanced under Hg and Pb. The results could have positive applications such as for defining toxicity thresholds (in phytoremediation) and acceptable concentration levels (for policies) for some of the most common heavy metals in agricultural soils

    Subtoxic levels of some heavy metals cause differential root-shoot structure, morphology and auxins levels in Arabidopsis thaliana

    Get PDF
    Contamination of soil by heavy metals severely affects plant growth and causes soil pollution. While effects on plant growth have been investigated for metals taken individually or in groups, less is known about their comparative effects. In this study Arabidopsis thaliana seedlings were grown for 14 days in Petri dishes containing medium contaminated by six common heavy metals (Hg, Cd, Pb, Cu, Ni and Zn), at the minimum concentrations defined as toxic by the most recent EU legislation on contamination of agricultural soils. (a) Root structure and morphology, (b) metal composition and translocation, and (c) the levels of indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) were analyzed. Metals accumulated more in roots than in shoots, with concentrations that differed by several orders of magnitude depending on the metal: Cd (ca. 700 × and ca. 450 × in roots and shoots, respectively), Hg (150 ×, 80 × ), Ni (50 ×, 20 × ), Cu (48 ×, 20 × ), Zn (23 ×, 6 × ), and Pb (9 ×, 4 × ). Responses were significant for at least nine of the ten root parameters (with the exception of Hg), and five of the six shoot parameters (with the exception of Zn). Cu and Zn induced respectively the strongest responses in root hormonal (up to ca. 240% the control values for IBA, 190% for IAA) and structural parameters (up to 210% for main root length, 330% for total lateral root length, 220% for number of root tips, 600% for total root surface, and from 2.5° to 26.0° of root growth angle). Regarding the shoots, the largest changes occurred for shoot height (down to 60% for Ni), rosette diameter (down to 45% for Hg), leaf number (up to 230% for Zn) and IBA (up to 240% for Pb and Cu). A microscope analysis revealed that shape and conformation of root hairs were strongly inhibited after Cd exposure, and enhanced under Hg and Pb. The results could have positive applications such as for defining toxicity thresholds (in phytoremediation) and acceptable concentration levels (for policies) for some of the most common heavy metals in agricultural soils

    Minimising makespan of discrete controllers: a qualitative approach

    Get PDF
    Qualitative controller synthesis techniques produce controllers that guarantee to achieve a given goal in the presence of an adversarial environment. However, qualitative synthesis only produces one controller out of many possible solutions and typically does not provide support for expressing preferences over other alternatives. In this paper, we thus present a formal approach to reason about preferences qualitatively, restricting attention to makespan of discrete eventbased controllers for reachability goals. Time is reasoned upon symbolically, which relieves the user from providing concrete quantitative measures. In particular, we study the scenario in which durations of individual activities are not known up-front. We first show how controllers can be symbolically and fairly compared by fixing the contingencies. Then, we present an algorithm to produce controllers that are makespan-minimising

    The crosstalk of melatonin and hydrogen sulfide determines photosynthetic performance by regulation of carbohydrate metabolism in wheat under heat stress

    Get PDF
    Photosynthesis is a pivotal process that determines the synthesis of carbohydrates re-quired for sustaining growth under normal or stress situation. Stress exposure reduces the photosynthetic potential owing to the excess synthesis of reactive oxygen species that disturb the proper functioning of photosynthetic apparatus. This decreased photosynthesis is associated with dis-turbances in carbohydrate metabolism resulting in reduced growth under stress. We evaluated the importance of melatonin in reducing heat stress‐induced severity in wheat (Triticum aestivum L.) plants. The plants were subjected to 25 °C (optimum temperature) or 40 °C (heat stress) for 15 days at 6 h time duration and then developed the plants for 30 days. Heat stress led to oxidative stress with increased production of thiobarbituric acid reactive substances (TBARS) and hydrogen peroxide (H2O2) content and reduced accrual of total soluble sugars, starch and carbohydrate metabolism enzymes which were reflected in reduced photosynthesis. Application of melatonin not only reduced oxidative stress through lowering TBARS and H2O2 content,augmenting the activity of antioxidative enzymes but also increased the photosynthesis in plant and carbohydrate metabolism that was needed to provide energy and carbon skeleton to the developing plant under stress. However, the increase in these parameters with melatonin was mediated via hydrogen sulfide (H2S), as the inhibition of H2S by hypotaurine (HT; H2S scavenger) reversed the ameliorative effect of melatonin. This suggests a crosstalk of melatonin and H2S in protecting heat stress‐induced photosynthetic inhibition via regulation of carbohydrate metabolism

    Ethylene and sulfur coordinately modulate the antioxidant system and ABA accumulation in mustard plants under salt stress

    Get PDF
    This study explored the interactive effect of ethephon (2-chloroethyl phosphonic acid; an ethylene source) and sulfur (S) in regulating the antioxidant system and ABA content and in maintaining stomatal responses, chloroplast structure, and photosynthetic performance of mustard plants (Brassica juncea L. Czern.) grown under 100 mM NaCl stress. The treatment of ethephon (200 µL L−1) and S (200 mg S kg−1 soil) together markedly improved the activity of enzymatic and non-enzymatic components of the ascorbate-glutathione (AsA-GSH) cycle, resulting in declined oxida-tive stress through lesser content of sodium (Na+) ion and hydrogen peroxide (H2O2) in salt-stressed plants. These changes promoted the development of chloroplast thylakoids and photosynthetic performance under salt stress. Ethephon + S also reduced abscisic acid (ABA) accumulation in guard cell, leading to maximal stomatal conductance under salt stress. The inhibition of ethylene action by norbornadiene (NBD) in salt-plus non-stressed treated plants increased ABA and H2O2 contents, and reduced stomatal opening, suggesting the involvement of ethephon and S in regulating sto-matal conductance. These findings suggest that ethephon and S modulate antioxidant system and ABA accumulation in guard cells, controlling stomatal conductance, and the structure and efficiency of the photosynthetic apparatus in plants under salt stress

    Enhancement of hydrogen production rate by high biomass concentrations of Thermotoga neapolitana

    Get PDF
    The objective of this study was to enhance the hydrogen production rate of dark fermentation in batch operation. For the first time, the hyperthermophilic pure culture of Thermotoga neapolitana cf. Capnolactica was applied at elevated biomass concentrations. The increase of the initial biomass concentration from 0.46 to 1.74 g cell dry weight/L led to a general acceleration of the fermentation process, reducing the fermentation time of 5 g glucose/L down to 3 h with a lag phase of 0.4 h. The volumetric hydrogen production rate increased from 323 (±11) to 654 (±30) mL/L/h with a concomitant enhancement of the biomass growth and glucose consumption rate. The hydrogen yield of 2.45 (±0.09) mol H2/mol glucose, the hydrogen concentration of 68% in the produced gas and the composition of the end products in the digestate, i.e. 62.3 (±2.5)% acetic acid, 23.5 (±2.9)% lactic acid and 2.3 (±0.1)% alanine, remained unaffected at increasing biomass concentrations

    Analysis of the effect of renal excretory system cooling during thermal radiofrequency ablation in an animal model

    Get PDF
    Analysis of renal excretory system integrity and efficacy of radiofrequency ablation with and without irrigation with saline at 2 o C (SF2). The median third of sixteen kidneys were submitted to radiofrequency (exposition of 1 cm) controlled by intra-surgical ultrasound, with eight minutes cycles and median temperature of 90 o C in eight female pigs. One excretory renal system was cooled with SF2, at a 30ml/min rate, and the other kidney was not. After 14 days of post-operatory, the biggest diameters of the lesions and the radiological aspects of the excretory system were compared by bilateral ascending pyelogram and the animals were sacrificed in order to perform histological analysis. There were no significant differences between the diameters of the kidney lesions whether or not exposed to cooling of the excretory system. Median diameter of the cooled kidneys and not cooled kidneys were respectively (in mm): anteroposterior: 11.46 vs. 12.5 (p = 0.23); longitudinal: 17.94 vs. 18.84 (p = 0.62); depth: 11.38 vs. 12.25 (p = 0.47). There was no lesion of the excretory system or signs of leakage of contrast media or hydronephrosis at ascending pyelogram. Cooling of excretory system during radiofrequency ablation does not significantly alter generated coagulation necrosis or affect the integrity of the excretory system in the studied model401939

    Diagnostic factors for recurrent pregnancy loss: an expanded workup

    Get PDF
    Purpose: There is limited information on the risk factors for recurrent pregnancy loss (RPL). Methods: In this study, a patient-based approach was used to investigate the possible involvement and relative relevance of a large number of diagnostic factors in 843 women with RPL who underwent an extensive diagnostic workup including 44 diagnostic factors divided into 7 major categories. Results: The rates of abnormalities found were: (1) genital infections: 11.74%; (2) uterine anatomic defects: 23.72%; (3) endocrine disorders: 29.42%; (4) thrombophilias: 62%; (5) autoimmune abnormalities: 39.2%; (6) parental karyotype abnormalities 2.25%; (7) clinical factors: 87.78%. Six hundred and fifty-nine out of eight hundred and forty-three women (78.17%) had more than one abnormality. The mean number of pregnancy losses increased by increasing the number of the abnormalities found (r = 0.86949, P < 0.02). The factors associated with the highest mean number of pregnancy losses were cervical isthmic incompetence, anti-beta-2-glycoprotein-1 antibodies, unicornuate uterus, anti-prothrombin A antibodies, protein C deficiency, and lupus anticoagulant. The majority of the considered abnormalities had similar, non-significant prevalence between women with 2 versus ≥ 3 pregnancy losses with the exception of age ≥ 35 years and MTHFR A1298C heterozygote mutation. No difference was found between women with primary and secondary RPL stratified according to the number of abnormalities detected (Chi-square: 8.55, P = 0.07). In these women, the only factors found to be present with statistically different rates were age ≥ 35 years, cigarette smoking, and genital infection by Ureaplasma. Conclusion: A patient-based diagnostic approach in women with RPL could be clinically useful and could represent a basis for future research
    corecore