
Controllability in Partial and Uncertain Environments

Nicolas D’Ippolito∗†, Victor Braberman∗
∗Universidad de Buenos Aires, Argentina

Nir Piterman‡
†Imperial College London, UK

Sebastian Uchitel∗†
‡University of Leicester, UK

Abstract—Controller synthesis is a well studied problem that
attempts to automatically generate an operational behaviour
model of the system-to-be that satisfies a given goal when deployed
in a given domain model that behaves according to specified
assumptions. A limitation of many controller synthesis techniques
is that they require complete descriptions of the problem domain.
This is limiting in the context of modern incremental development
processes when a fully described problem domain is unavailable,
undesirable or uneconomical. Previous work on Modal Transition
Systems (MTS) control problems exists, however it is restricted
to deterministic MTSs and deterministic Labelled Transition
Systems (LTS) implementations. In this paper we study the
Modal Transition System Control Problem in its full generality,
allowing for nondeterministic MTSs modelling the environment’s
behaviour and nondeterministic LTS implementations. Given
an nondeterministic MTS we ask if all, none or some of the
nondeterministic LTSs it describes admit an LTS controller that
guarantees a given property. We show a technique that solves
effectively the MTS realisability problem and it can be, in some
cases, reduced to deterministic control problems. In all cases the
MTS realisability problem is in same complexity class as the
corresponding LTS problem.

I. Introduction

Correct-by-construction is an alternative approach to construct-
and-verify that makes sense in many software engineering
settings including embedded [1], adaptive systems [2], and
model-based development (e.g, [3], [4], [5], [6], [7], [8]). The
assumption is that reasoning about system goals declaratively
and then producing automatically operational descriptions of
how such goals can be achieved leads to high quality systems.

Controller synthesis is a field which fits into this approach.
Very abstractly, given a model of the assumed behaviour of the
environment (E) and a system goal (G), controller synthesis
produces an operational behaviour model for a component M
that when executing in an environment consistent with the
assumptions results in a system that is guaranteed to satisfy
the goal – i.e., E‖M |= G.

Controller synthesis has been traditionally oriented to-
wards hardware engineering, focusing mainly on a Machine-
Environment model based on shared memory. Consequently,
Kripke structures have been extensively used as the formal
setting for behaviour modelling [9]. More recently, focus
on event-based formal models, such as Labelled Transition
Systems (LTS), that support other interactions models (e.g.
message passing and remote procedure calls) that are com-
monplace in Software Engineering have also been studied [8].

In practice, software engineering is not a waterfall process.
Engineers do not build a complete description of the environ-
ment E and system goals G before they start thinking about

(or actually getting round to doing some) implementation. In
fact, it is widely accepted that intertwining requirements and
design is crucial and informs the requirements elaboration
process [10]. Indeed, notions such as realisability (i.e. if it
is possible to build a system that satisfies a partial enunciation
of its goals and also a partial description of its environment)
have been studied extensively for this purpose.

The importance of reasoning over partial specifications is
at odds with the requirement of complete behaviour models
that controller synthesis imposes. Typically, approaches to
controller synthesis require a completely defined model of the
system behaviour (e.g. an LTS) with respect to a fixed alphabet
of actions (e.g. traces described by the transition system
are required, all else is prohibited) and consequently do not
allow reasoning about realisability or constructing controllers
when only partial information about the system environment
is available.

Formalisms that support partial operational descriptions
of behaviour have been studied for sometime. Notably,
multi-valued Kripke structures [11] and modal transition
systems [12]. These models allow explicit distinction between
behaviour that is required and prohibited from behaviour
for which it is yet unknown in which of the two previous
categories it falls.

Despite advances in verification of partial behaviour mod-
els and the close technical relation between verification and
synthesis (the former can answer if E‖M |= G, the latter
goes one step further showing what M must look like so to
have E‖M |= G) such formalisms have been scantily studied
in the context of the controller synthesis. In the context of
event-based interaction models, we have studied the problem of
synthesis for partial behaviour models using Modal Transition
Systems (MTS) as the formal grounding for environment
behaviour description. This preliminary work was limited to
deterministic behaviour models, an important restriction which
impedes using abstraction in models to reduce complexity and
hinders modelling failures and in general non-deterministic
aspects of problem domains. In this paper we solve the problem
of MTS control for non-deterministic domain models and
consider non-deterministic implementations. The framework
supports goals expressed in Fluent Linear Temporal Logic
(FLTL) [13] and can be used in conjunction with specialised
(and more efficient) synthesis algorithms for sublogics such as
GR(1) [14].

II. Preliminaries

A. Transition Systems

We fix notation for labelled transition systems (LTSs) [15],
which are widely used for modelling and analysing the
behaviour of concurrent and distributed systems. An LTS
is a state transition system where transitions are labelled
with actions. The set of actions of an LTS is called its
communicating alphabet and constitutes the interactions that
the modelled system can have with its environment.

Definition 2.1: (Labelled Transition Systems [15]) Let
States be the universal set of states, Act be the universal
set of actions. A Labelled Transition System (LTS) is a tuple
E = (S,A,∆, s0), where S ⊆ States is a finite set of states,
A ⊆ Act is a finite alphabet, ∆ ⊆ (S ×A× S) is a transition
relation, and s0∈S is the initial state.

If for some s′ ∈ S we have (s, `, s′) ∈ ∆ we say that ` is
enabled from s. For a state s we denote ∆(s) = {` | ∃s′ ·
(s, `, s′) ∈ ∆} and ∆(s, `) = {s′ | (s, `, s′) ∈ ∆}.

Definition 2.2: (Parallel Composition) Let M = (SM ,
AM , ∆M , sM0) and N = (SN , AN , ∆N , sN0) be LTSs. Parallel
composition ‖ is a symmetric operator (up to isomorphism)
such that M‖N is the LTS P = (SM × SN , AM ∪ AN , ∆,
(sM0 , sN0)), where ∆ is the smallest relation that satisfies the
rules below, where ` ∈ AM ∪AN :

(s,`,s′)∈∆M

((s,t),`,(s′,t))∈∆ `∈AM\AN
(t,`,t′)∈∆N

((s,t),`,(s,t′))∈∆ `∈AN\AM

(s,`,s′)∈∆M , (t,`,t′)∈∆N

((s,t),`,(s′,t′))∈∆ `∈AM∩AN

Definition 2.3: (Traces) Consider an LTS
L = (S,A,∆, s0). A sequence π = `0, `1, . . . is a trace
in L if there exists a sequence s0, `0, s1, `1, . . ., where for
every i ≥ 0 we have (si, `i, si+1) ∈ ∆.

Modal Transition System (MTS) [12] are abstract notions
of LTSs. They extend LTSs by distinguishing between two sets
of transitions. Intuitively an MTS describes a set of possible
LTSs by describing an upper bound and a lower bound on
the set of transitions from every state. Thus, an MTS defines
required transitions, which must exist, and possible transitions,
which may exist. By elimination, other transitions cannot exist.
Formally, we have the following.

Definition 2.4: (Modal Transition System [12]) A Modal
Transition System (MTS) is M = (S,A,∆r,∆p, s0), where
S ⊆ States, A ⊆ Act, and s0 ∈ S are as in LTSs and ∆r ⊆
∆p ⊆ (S × A × S) are the required and possible transition
relations, respectively.

We refer to actions in ∆p\∆r as maybe actions. We depict
maybe transitions by suffixing actions with a question mark
“?”. We denote by ∆p(s) the set of possible actions enabled in
s, namely ∆p(s) = {` | ∃s′ · (s, `, s′) ∈ ∆p} and ∆p(s, `) the
set of a-successors of s, namely ∆p(s, `) = {s′ | (s, `, s′) ∈
∆p}. Similarly, ∆r(s) and ∆r(s, `).

Definition 2.5: (Refinement) Let M = (S,A,∆r
M ,∆

p
M , s

M
0)

and N = (T,A,∆r
N , ∆p

N , s
N
0) be two MTSs. Relation

H ⊆ S × T is a refinement between M and N if the
following holds for every ` ∈ A and every (s, t) ∈ H .

• If (s, `, s′) ∈ ∆r
M then there is t′ such that (t, `, t′) ∈ ∆r

N
and (s′, t′) ∈ H .

• If (t, `, t′) ∈ ∆p
N then there is s′ such that (s, `, s′) ∈ ∆p

M
and (s′, t′) ∈ H .

We say that N refines M if there is a refinement relation
H between M and N such that (sM0 , sN0) ∈ H , denoted
M � N . We say that N and M are bisimilar if the same
refinement relation (transposed) shows that M refines N and
that N refines M .

Intuitively, N refines M if every required transition of M
exists in N and every possible transition in N is possible also
in M . An LTS can be viewed as an MTS where ∆p = ∆r.
Thus, the definition generalises to when an LTS refines an
MTS. LTSs that refine an MTS M are complete descriptions
of the system behaviour and thus are called implementations
of M .

Definition 2.6: (Implementation and Implementation Rela-
tion) An LTS N is an implementation of an MTS M if and
only if N is a refinement of M (M � N). We shall refer
to the refinement relation between an MTS and an LTS as an
implementation relation. We denote the set of implementations
of M as IM .

We say that an MTS is deterministic if there is no state that
has two outgoing possible transitions on the same label. More
formally, an MTS E is deterministic if (s, `, s′) ∈ ∆p

E and
(s, `, s′′) ∈ ∆p

E implies s′ = s′′. The definition generalizes
to LTSs as well. We refer to the set of all deterministic
implementations of an MTS M as IdM .

B. Fluent Linear Temporal Logic

We describe properties using Fluent Linear Temporal Logic
(FLTL) [13]. FLTL is a linear-time temporal logic for reason-
ing about fluents. A fluent Fl is defined by a pair of sets and a
Boolean value: Fl = 〈IFl, TFl, InitFl〉, where IFl ⊆ Act is the
set of initiating actions, TFl ⊆ Act is the set of terminating
actions and IFl ∩ TFl = ∅. A fluent may be initially true or
false as indicated by InitFl. Every action ` ∈ Act induces a
fluent, namely fl ` = 〈{`}, Act \ {`}, false〉.

Let F be the set of all possible fluents over Act. An FLTL
formula is defined inductively using the standard Boolean
connectives and temporal operators X (next), U (strong until)
as follows: ϕ ::= Fl | ¬ϕ | ϕ∨ψ | Xϕ | ϕUψ, where Fl ∈ F .
As usual we introduce ∧, ♦ (eventually), � (always), and W
(weak until) as syntactic sugar. Let Π be the set of infinite
traces over Act. The trace π = `0, `1, . . . satisfies a fluent Fl
at position i, denoted π, i |= Fl, if and only if one of the
following conditions holds:

• InitFl ∧ (∀j ∈ N · 0 ≤ j ≤ i→ `j /∈ TFl)
• ∃j ∈ N · (j ≤ i ∧ `j ∈ IFl) ∧ (∀k ∈ N · j < k ≤ i →
`k /∈ TFl)

In other words, a fluent holds at position i if and only if it
holds initially or some initiating action has occurred, but no
terminating action has yet occurred.

For an infinite trace π, the satisfaction of a (composite)
formula ϕ at position i, denoted π, i |= ϕ, is defined as follows:

π, i |= ¬ϕ , ¬(π, i |= ϕ)
π, i |= ϕ ∨ ψ , (π, i |= ϕ) ∨ (π, i |= ψ)
π, i |= Xϕ , π, i+ 1 |= ϕ
π, i |= ϕUψ , ∃j ≥ i.π, j |= ψ ∧ ∀ i ≤ k < j.π, k |= ϕ

We say that ϕ holds in π, denoted π |= ϕ, if π, 0 |= ϕ. A
formula ϕ ∈ FLTL holds in an LTS E (denoted E |= ϕ) if it
holds on every infinite trace produced by E.

In this paper we modify LTSs and MTSs by adding new
actions and adding states and transitions that use the new
actions. It is convenient to change FLTL formulas to ignore
these changes. Consider an FLTL formula ϕ and a set of
actions Γ such that for all fluents Fl = 〈IFl, TFl, InitFl〉 in
ϕ we have Γ ∩ (IFl ∪ TFl) = ∅. We define the Γ-variant
version of ϕ, denoted XΓ(ϕ), by replacing every sub-formula
Xψ in ϕ by X((

∨
`∈Γ fl `)UXΓ(ψ)).

Thus, this transformation replaces every next operator
occurring in the formula by an until operator that skips
uninteresting actions that are in Γ.

Theorem 2.1: Given a trace π = `0, `1, . . . in E = (S,
A,∆, s0), an FLTL formula ϕ and a set of actions Γ ∈ Act.
If Γ ∩ A = ∅ then for every trace π′ that is a Γ-variant of π
we have π |= ϕ iff π′ |= XΓ(ϕ).

We note that our results hold for properties that describe
sets of traces that can be modified easily to accept Γ-variants as
above. We choose to focus on FLTL as it makes all complexity
results concrete and is a well accepted standard.

C. Controller Synthesis

An LTS control problem is an LTS E whose actions are
partitioned to controllable and uncontrollable. We seek a
controller M such that E‖M does not restrict uncontrollable
actions of E and E‖M does not have deadlocks. Formally, we
have the following.

Definition 2.7: (Legal LTS) Consider E and M two LTSs.
We say that M is legal for E with respect to controllable
alphabet Ac ⊆ A if for every reachable state (s,m) of E‖M
we have i) if (s, `, s′) ∈ ∆E and ` /∈ Ac then there is m′ such
that (m, `,m′) ∈ ∆M and, ii) there is an action ` and states s′
and m′ such that ((s,m), `, (s′,m′)) is a transition in E‖M .

Definition 2.8: (LTS Control [8]) Given a domain model
in the form of an LTS E = (S,A,∆, s0), a set of controllable
actions Ac ⊆ A, and an FLTL formula ϕ, a solution for the
LTS control problem E = 〈E,ϕ,Ac〉 is an LTS M = (SM ,
AM , ∆M , s0M

) such that M is a legal LTS for E, E‖M is
deadlock free, and every trace π in E‖M is such that π |= ϕ.

Whenever a controller exists we say that the control
problem is realisable. It is unrealisable otherwise. In case that a
domain model E is given and Ac and ϕ are implicit we denote
by E the control problem E = 〈E,ϕ,Ac〉. We depict uncon-
trollable actions (i.e. actions in A \ Ac) with doubled-dashed
transitions (e.g., see transition (4, readyForP ickup, 5)). In
figures we use c and u actions to denote controllable and
uncontrollable actions respectively – e.g. models in Figure 2.

Theorem 2.2: (LTS Control [9], [16]) Given an LTS control
problem E = 〈E,ϕ,Ac〉 it is decidable in 2EXPTIME in the
size of ϕ and EXPTIME in E whether E is realisable. If E is
deterministic the algorithm is polynomial in the size of E. The
algorithm for checking realisability can also extract a controller
M .

The problem MTS control problem [17] is to check whether
all, none or some of the LTS implementations of a given MTS
can be controlled by an LTS controller [8]. More specifically,
given an MTS, an FLTL goal and a set of controllable
actions, the answer to the MTS control problem is all if all
implementations of the MTS can be controlled, none if no
implementation can be controlled and some otherwise. This is
formally defined below.

Definition 2.9: (Semantics of MTS Control) Given an MTS
E = (S, A, ∆r, ∆p, s0), an FLTL formula ϕ and a set Ac ⊆
A of controllable actions, to solve the MTS control problem
E = 〈E,ϕ,Ac〉 is to answer:

• All, if for all LTS I∈IE , the control problem 〈I, ϕ,Ac〉
is realisable,
• None, if for all LTS I∈IE , the control problem 〈I, ϕ,Ac〉

is unrealisable,
• Some, otherwise.

A naı̈ve approach to the MTS control problem may require
to evaluate an infinite number of LTS control problems.
In [17] we solved the problem of MTS control when the
MTS is deterministic and restricting attention to deterministic
implementations. That is, replace all quantification over LTS
above by quantification over IdE instead of IE – recall
that IdE refers to the set of deterministic implementations
of E. Technically, we proposed two LTS control problems
that answer, respectively, whether all implementations are
controllable and whether none of the implementations are
controllable.

III. Motivation

Consider the following example inspired by the one presented
originally in [18]. A library requires a system that allows the
users to borrow books and guarantees that users have access to
their desired ones. Books are loaned for a fixed period of time
after which users must return them. Books are automatically
available as soon as they are returned. The system must handle
concurrent book requests by multiple users.

In Figure 1, we show a partial specification for the book-
loan process up to the level requirements have been defined.
Although the system is multi-user, the model shows the
behaviour of the system from the perspective of one user,
abstracting away multi-user behaviour using non-determinism.
When a user wants to borrow a book she searches for the
desired one (queryBook). Then, the system displays a list of
available copies (listBooks) from which the user can choose
one (selectForP ickup) and then pick it up from the counter
(pickup). However, as the system is used by several users
at the same time, the selected copy may have been offered,
chosen and taken by another user. In such a case, an alternative
book is locked and offered. The user can then either accept
(acceptAlt) and pick up the book (pickupAlt) or decline the

0

readyForPickup
4

pickup

1
queryBook

3
selectForPickup

2selectForPickup

pickup

declineAltpickupAlt

5

6
return

blog?

7
acceptAlt

hold&wait?

7
listBooks

Fig. 1. Books Loan Partial Specification.

offer (declineAlt). For simplicity, in this example we require
a user to return a book before another can be requested.

The interference between users that may make a
selectForP ickup successful (allowing pick up) or not
(proposing an alternative) is abstracted away in Figure 1 with
a non-deterministic choice. The choice hides the reason for
which one scenario or the other may occur. This is a standard
approach to reducing model complexity.

Some libraries allow users to reserve a copy of a currently
unavailable book. When a copy of the reserved book is
returned to the library, the copy is locked and the user is
notified for pick up (readyForP ickup). Such a situation is
modelled here as a possible but not required – i.e. maybe –
transition that models the choice of the user to hold a copy as
soon as it is returned (hold&wait).

Another variability in this specification is that users may
be provided with a blogging feature to allow them to share
their impressions about a book while they are reading it. This
is modelled with another maybe transition labelled blog.

The maybe transitions hold&wait and blog underspecify
the library system allowing implementations that provide
different combinations of functionality (i.e. providing or not
“hold and wait”, providing or not “blogging”). Our aim is
to understand if a controller exists that can guarantee that
users will eventually get the book of choice (formalised by
the FLTL property �(queryBook → ♦pickup)). Note that
actions In particular we are interested in knowing whether the
goal will be achievable in all valid implementations of such
specifications, in only some or none of them.

The answer to the MTS control problem stated above is
some. This follows from the fact that there are implementations
of the system that are indeed controllable but there are also
implementations in which it is simply not possible to guarantee
that the user will eventually get her desired book.

Consider an implementation that does not implement the
hold&wait feature. As selectForP ickup is nondeterministic,
it is impossible to guarantee that the user will eventually get
the chance to pickup the book – i.e., it may always lose the
race with other users and end up in state 3, being forced to
choose an alternative book or cancel the request.

On the other hand, an implementation that allows the user
to reserve the book to be taken when returned is indeed
controllable. Naturally, this holds because we are assuming
that there is a mechanism for guaranteeing that users actually
return books. This assumption is coded in state 5 in which
readyForP ickup must eventually happen.

As not all implementations are controllable this suggests
that either we must strengthen our specification to force
implementations with the ”hold and wait” feature (provision
of the ”blogging” feature is irrelevant for controllability of our
goal), we must weaken our goal (e.g. for instance allowing
users to give up on their wanted book) or strengthen our
assumptions (e.g. queries cannot fail more than 5 times in a
row).

IV. MTS Control Problem

In this section we consider the problem of MTS control
when the MTS could be nondeterministic and we consider
nondeterministic implementations. We provide intuitions for
proofs, for more detailed see [19]. We show how to construct
two nondeterministic LTSs, E∀ and E∃, such that if a control
problem with E∀ is realisable the answer to the MTS control
problem for E is all and, dually, if a control problem with
E∃ is unrealisable the answer is none. This is similar to
the solution of MTS control in the deterministic case [17]
in the sense that we construct an LTS that is the “hardest”
implementation to control and an LTS that is the “easiest”
implementation to control. Answering these two LTS control
problems gives a correct answer to the MTS control problem.
We start with the problem of answering the question whether
all implementations are controllable.

Definition 4.1: Consider an MTS E = (S,A,∆r, ∆p, s0)
and a set of controllable actions Ac ⊆ A. We define E∀ =
(SE∀ , AE∀ , ∆E∀ , s0) as follows:

• SE∀ = S ∪ {(s, 1) | s ∈ S and ∅ 6= ∆r(s) ⊆ Ac}
• AE∀ = A ∪ {`1}
• ∆E∀ =
{(s, `, s′) ∈ ∆p | ∆r(s) 6= ∅ and ` /∈ Ac} ∪
{(s, `1, (s, 1)) | (s, 1) ∈ SE∀} ∪
{((s, 1), `, s′) | s′ ∈ ∆p(s, `) and ∆r(s, `) 6= ∅}

Intuitively, the transformation gives more control to the
environment. First, the new action `1 is uncontrollable. The
construction of E∀ proceeds by considering three cases: i)
states with required uncontrollable transitions enabled, ii)
states with no required uncontrollable transitions enabled,
but required controllable transitions enabled, and iii) states
with no required transitions (i.e. only maybe transitions). To
states that have uncontrollable required transitions we add all
uncontrollable transitions – note that controllable transitions
are not included as they do not affect controllability. As an
example, consider E1 and E∀

1 shown in Figures 2(a) and 2(d)
respectively. E∀

1 is the result of applying the transformation
above to E1. E∀

1 includes all possible uncontrolled imple-
mentation choices. Hence, control E∀

1 guarantees controlla-
bility of every implementation of E1. To states that have
no uncontrollable required transitions and some controllable
required transitions we include all uncontrollable transitions
and an extra uncontrollable transition to a new state (i.e.
(s, 1)) that enables all required controllable transitions from
the original state. Intuitively, we give the environment a
choice between all (possible) uncontrollable transitions and
(through the new state (s, 1)) a choice to implement additional
controllable transitions that agree with their labels with the
existing required transitions. Hence, forcing the controller to

0

1
u

3
c?

2u?

4

u'?

(a) E1

0

1c

2
c?

5
u?

6 c''?

3

c'?

4

c'?

(b) E2

2

3
c?

5

u?

6

u?

4c?0

1

c

c'

(c) E3

0

1
u

2u

2

u'

(d) E∀
1

0

1c

2
c

5u

0,1

`1

(e) E∀
2

2

0

1c

c'

(f) E∀
3

Fig. 2. Examples of E∀.

be able to control every possible nondeterministic combination
of transitions with at least one required option. For example,
consider E2 and E∀

2 in Figures 2(b) and 2(e) respectively.
In order to control E∀

2 the controller must have a solution
for both, i) all uncontrollable possible transitions, and, as
`1 is uncontrollable, ii) for every possible nondeterministic
choice on the required controllable. Note that we do not
include transitions on controllable actions that have no required
transition (e.g., 0

c′′?−→ 6) as they might allow the controller to
avoid enabling some required transitions. On the other hand,
we do include all nondeterministic options over the actions
that have some required controllable as it makes the problem
harder for the controller. Finally, from states that have no
required transitions we do not add transitions at all – i.e.
they become deadlock states. This follows from the fact that
the implementation that disables all transitions from such a
state is a valid implementation. Consider E3 in Figure 2(c)
is an example of the previous case. To be sure that all
implementations of R3 can be controlled, it is necessary to
have a solution that completely avoids reaching the deadlock
state 2.

The LTS E∀ provides the basis for determining whether
the answer to the MTS control question is All. The following
lemma provides the key properties to compute the answer for
the case all.

Lemma 4.1: (All) Given an MTS control problem E =
〈E,ϕ,Ac〉, where E = (S,A, ∆r,∆p, s0E

). If E∀ is the LTS
obtained by applying Definition 4.1 to E, then the following
holds. The answer for E is all iff the LTS control problem
E∀ = 〈E∀,X{`1}(ϕ), Ac〉 is realisable.

We give an intuition of the proof for Lemma 4.1. Assume
there is no solution to E∀. Then we know that the environment
has a strategy to violate the controller’s requirements. This
follows from the fact that LTS control problems are solved
by a reduction to two-player games [8] and such games are
Determined [20], which means that if the game is loosing for
one player (e.g. the controller) it must be the case that is
winning for the other one (e.g. the environment). Note that,
a game is winning for a player means that she has a strategy
that wins against any strategy of her opponent. At a glance,
this proof uses the environment’s strategy N to violate the

controller goals to build an uncontrollable implementation I
of E. This is done by building an implementation relation
between I and E that chooses what to implement based on the
decisions of the N . Then we prove that I is uncontrollable,
which follows by the fact that we built I choosing what to
implement as N would have. Hence, violating the controller
goals.

Intuitively, in the other direction the proof is based on
the idea that a controller for E∀encodes a strategy for all
possible implementations of E. More specifically, we start by
assuming that there is a controller M for E∀. Then, given
an implementation I of E (i.e. I ∈ IE), we show that there
exists a controller M ′ for I = 〈I, ϕ,Ac〉. We then construct
M ′ from M following the refinement relation between E and
I . Intuitively, M ′ can be seen as the result of pruning M by
removing all implementations choices disabled from E by I .
In addition, as M ′ is built upon M , M ′ is a solution to I.
More specifically, we consider states of I following cases as
done in Definition 4.1, now taking into account the refinement
relation between I and E. Consider a state t of I that refines
state s of E. If s has uncontrollable required transitions but
no controllable required, then, by construction, we know that
s have all possible uncontrollable transitions enabled in E∀.
Hence, M also includes all possible uncontrollable transitions
from s, from which follows that M will have a transition for
any enabled transition in t. If the only required transitions from
s are controllable, then by definition of E∀, the controller
of E∀must enable a transition to, both the state (s, 1) from
which the required controllable transitions are enabled, and
all the possible uncontrollable successors of s. It follows
that the controller can control any implementation choice of
uncontrollable transitions from t, and also, as t refines s, the
required controllable that must be enabled in t. Note that states
t of I that refine states s of E where all transitions enabled
in s are maybe transitions induce deadlock states that will not
be reachable in M ′‖I as, in E∀they are deadlock states.

We now turn to the case of distinguishing between the none
case and all or some.

Definition 4.2: Consider an MTS E = (S,A,∆r,∆p, s0)
and a set of controllable actions Ac ⊆ A. We define E∃ =
(SE∃ , AE∃ ,∆E∃ , s0) as follows:

• SE∃ = S ∪ {(s, a, s′) ∈ ∆p | a ∈ A and ∆r(s) = ∅} ∪{
(s, a, s′) ∈ ∆p

∣∣∣∣ a ∈ A and ∅ 6= ∆r(s) ⊆ Ac,
and ∆r(s, a) = ∅

}
• AE∃ = A ∪ {`(a,s′) | a ∈ A and (s, a, s′) ∈ ∆p \∆r}
• ∆E∃ = {(s, a, s′) | a ∈ A and (s, a, s′) ∈ ∆r} ∪{

(s, `(a,s′), (s, a, s
′)) |a ∈ A and (s, a, s′) ∈ SE∃

}
∪

{((s, a, s′), a, s′) | a ∈ A}

Intuitively, E∃ gives more control to the controller. As
before we consider states according to the set of enabled
transitions. For states with uncontrollable required transitions
we add in E∃ all required transitions as they will be enabled
in all implementations. We do not add other transitions as
it would only result in a more complex problem because
either we add new uncontrollable transitions, or we add
nondeterministic choices over the (already enabled) required
transitions. An example of this case is shown in the models
in Figures 3(a) and 3(d). Note that to control E∃

4 it is only
necessary to have a solution for the uncontrolled transition.

0

1
u

3

c
2u?

(a) E4

0

1
u?

3

c?
2c

4
c

5

c'

(b) E5

0

1
u?

2
c?

3

c?

(c) E6

0

1u

3
c

(d) E∃
4

0

1u

2

`(u,1)
(0, u, 1)

c

4

c

5

c'

(e) E∃
5

0

1u

2c

3c

`(u,1)

`(c,2)

`(c,3)

(0, u, 1)

(0, c, 2)

(0, c, 3)

(f) E∃
6

Fig. 3. Examples of E∃.

However, if the state were such that its only required transitions
are controllable, then they should be in E∃ as they could be
chosen by the controller.

In order to strengthen the controller, we add to E∃ states
that allow it to choose which transitions to implement in
two cases. First, from states that have required controllable
transitions but no required uncontrollable transitions. Second,
from states that have no required transitions from them.

From states that have no uncontrollable required transitions
but have some required controllable transitions we add pos-
sible transitions that do not share an action with a required
transition. This means that the controller has a choice of
either implementing one maybe transition or using one of
the required transitions. We do this by adding new transitions
labelled with actions that uniquely identify the transition. For
instance, consider E∃

5 from Figure 3(e), the result of applying
the latter rule to E5 in Figure 3(b). The controllable transition

0
`(u,1)−→ (0, u, 1), that comes allows the controller to choose

to implement the maybe transition 0
u?−→ 1 if it wants to.

Otherwise, it can choose to use the (required) controllable
transition labelled c.

From states that have no required transitions we allow the
system to choose which maybe transition to implement. As
before we use actions to identify the transition, allowing the
controller to choose which one to implement. Note that all
possible nondeterministic choices are included (but made de-
terministic). See for example models in Figures 3(c) and 3(f).

The LTS E∃ provides the basis for determining whether
the answer to the MTS control question is None.

Lemma 4.2 provides the key properties to compute the
answer for the case none.

Lemma 4.2: (None) Given an MTS control problem E =
〈E,ϕ,Ac〉 where E = (S,A,∆r,∆p, soE). If E∃ is the LTS
obtained by applying Definition 4.2 to E, then the following
holds. The answer for E is none iff the LTS control problem
E∃ = 〈E∃,XA(ϕ), AE∃ \ (A \Ac)〉 is unrealisable.

We give an intuition of the proof for Lemma 4.2. We
first assume that there is a controller M for E∃. Now, recall

that M controls `(a,s) actions, which are only added in E∃

for maybe transitions in E. Thus, a transition labelled `(a,s)

appearing in M represents an implementation choice that can
be controlled by M . In other words, M encodes a set of
controllable implementations. More specifically, we construct,
from M and E∃, an implementation I and a controller M ′

for I = 〈I, ϕ,Ac〉 and that will show that none implies the
unrealisability of E∃control problem. We consider states in
cases. If the state has uncontrollable required transitions, then
for each of them we include a transition in I and M ′. If
the state has no uncontrollable required but some controllable
required, then we choose transitions to implement in I and
enable in M ′ following what is enabled by M . If the state has
no required transitions, then as all actions of the form `(a,s)

are controllable we add to I and M ′ actions enabled by M .
We then show that M ′ indeed controls I. This is done by
showing a correspondence between traces of I‖M ′ and traces
of E∃‖M , which can be proven following their construction
procedure. Thus, both must satisfy the respective goals.

In the other direction, given an implementation I ∈ IE and
a controller M ′ for I, we construct a controller M for E∃.
The construction of M is directed by the refinement relation
between E and I , and the controllable transitions enabled
by M ′. Intuitively, M is an extension of M ′ that follows
implementation choices of I by adding transitions labelled with
`(a,s) that will synchronise with E∃– i.e. forcing E∃ to behave
as I . More specifically, if t is a state of I that refines state s
of E and implements a maybe transition (s, a, s′), then M
enables the successor (s, a, s′) of s in E∃. We then show how
a correspondence between traces of I‖M ′ and traces of E∃‖M
is established, from which follows that both traces satisfy the
respective goals.

We now provide the algorithm to compute the solution to
the MTS Control Problem. The soundness and completeness
of the algorithm follows from Lemma 4.1 and Lemma 4.2.

Algorithm 1: (MTS Control) Given an MTS control prob-
lem E = 〈E,ϕ,Ac〉. If E∀ and E∃ are the LTSs obtained by
applying Definitions 4.1 and 4.2 respectively, to E, then the
answer for E is computed as follows.

• All, if there exists a solution for E∀ = 〈E∀,X{`1}(ϕ), Ac〉
• None, if there is no solution for E∀ and no solution for
E∃ = 〈E∃,XA(ϕ), AE∃ \ (A \Ac)〉.

• Some, otherwise.

Theorem 4.1: (MTS Control) Given an MTS control prob-
lem E = 〈E,ϕ,Ac〉 it is decidable in 2EXPTIME in ϕ and
EXPTIME in E whether E is realisable.

Proof: The algorithm for checking whether E is realisable
calls for solving two LTS control problems. One with E∀ and
one with E∃. The size of both E∀ and E∃ is linear in the size
of E. The sizes of X{`1}(ϕ) and XA(ϕ) are linear in the size of
ϕ. From Theorem 2.2 we establish the bounds of 2EXPTIME
in the size of ϕ and EXPTIME in the size of E.

V. Efficient MTS Control Subproblems

The complexity of the general MTS control problem has
exponential growth with respect to two factors: the size of the

formula and the size of the domain model (see Theorem 2.2).
Various sublogics have been studied to reduce the (doubly)
exponential growth of complexity with respect to the goal to
be controlled. In particular, GR(1) goals reduce this complexity
to polynomial [14].

In this section, we address the exponential growth in the
size of the domain model by identifying two MTS control
subproblems for which the complexity in the size of the
domain model is polynomial. The first subproblem is when we
restrict MTS to be deterministic. The second is when we limit
the possible implementations of MTS to deterministic ones.
We show that in both cases a simpler analysis that requires
reasoning about deterministic LTS controllability is sufficient.

A. Deterministic MTS Non-Deterministic Implementations

We formally define the subproblem of answering whether all,
some or none implementations of a deterministic MTS are
controllable as follows:

Definition 5.1: (Det MTS Control) Given an MTS control
problem E = 〈E,ϕ,Ac〉, where E is deterministic. Then the
answer for E is computed as follows.

• All, if all deterministic implementation of E are realis-
able.

• None, if no deterministic implementation of E is realis-
able, and

• Some, otherwise.

We note that the case of determinstic MTS realisability
where only deterministic implementations are considered was
handled in [17]. We show that in this case, MTS control
reduces to the simpler problem of considering only determin-
istic implementations. We need to establish correspondence
between the three possible answers of the two problems.

The following Lemma states that if the answer to the
Det MTS control problem is some or all, then the answer
cannot be none for the problem restricted to deterministic
implementations as solved in [17].

Lemma 5.1: Given a deterministic MTS E =
(S,A,∆r,∆p, s0), an FLTL formula ϕ, and a set Ac ⊆ A of
controllable actions; If for some N ∈ IE we have 〈N,ϕ,Ac〉
is realisable then for some D ∈ IdE we have 〈D,ϕ,Ac〉 is
realisable.

The following Lemma states that if the answer to the con-
trol problem is all when restricting attention to deterministic
implementations then all nondeterministic implementations are
controllable as well.

Lemma 5.2: Given a deterministic MTS E =
(S,A,∆r,∆p, s0), and FLTL formula ϕ and a set Ac ⊆ A of
controllable actions; If for all D ∈ IdE we have 〈D,ϕ,Ac〉
is realisable then for every N ∈ IE we have 〈N,ϕ,Ac〉 is
realisable.

It follows from the two lemmata above that the following
algorithm correctly computes the answer to the MTS control
problem when the MTS is deterministic.

Algorithm 2: Given an MTS control problem
E = 〈E,ϕ,Ac〉, where E is deterministic. The answer
to the control problem E is as follows.

• All, if the answer for the deterministic MTS control
problem E .

• None, if there is no solution for the deterministic MTS
control problem E .

• Some, otherwise.

Theorem 5.1: (Deterministic MTS Control) Given an MTS
control problem E = 〈E,ϕ,Ac〉, where E is deterministic, it
is decidable in 2EXPTIME in ϕ and polynomial in E whether
E is realisable.

Proof: We have shown that in this case it is enough to
consider the case of deterministic implementations. From [17]
this MTS control can be reduced to two LTS control problems
where the LTSs are deterministic. From Theorem 2.2 it follows
that it is 2EXPTIME in ϕ and polynomial in E.

B. Non-Deterministic MTS Deterministic Implementations

The case of searching for deterministic implementations of a
nondeterministic MTS is handled differently. First, we extract
from the MTS E a sub-MTS D. If D and E are not bisimilar,
then E has no deterministic implementations. Then, we apply
a specialized control check on D and the answer to the
realisability check on D is the answer to whether all, some,
or none of the deterministic implementations of E can be
controlled to satisfy the formula.

Definition 5.2: Consider an MTS E = (S,A,∆r,∆p, s0).
We extract from E a sub-MTS D, where D =
(T,A,∆r,∆p, s0). We construct T ⊆ S by induction.
Consider a state s ∈ T ∩ S. For every label ` such that
` ∈ ∆r(s) we add to T one required a-successor of s. For
every label ` such that ` ∈ ∆p(s) \ ∆r(s) we add to T all
maybe ` successors of s.

Lemma 5.3: Given a nondeterministic MTS
E = (S,A,∆r,∆p, s0), E has deterministic implementations
if and only if D is bisimilar to E.

Proof: Assume that there is a deterministic implemen-
tation I of E. From the implementation relation between I
and E we can construct an implementation relation between I
and D. Indeed, the only transitions missing from D are cases
where a state s in E has two required successors (s, `, s′) and
(s, `, s′′). But as s is implemented by some state of I , then,
by definition of refinement, s′ and s′′ must be bismilar and
whatever choice in E to continue from s to either (s, `, s′) or
(s, `, s′′) would be sufficient to implement the state s in E.
Thus D is bisilimar to E. The other direction is trivial and
omitted.

Clearly, if E has no deterministic implementations then
the answer to the question whether all deterministic imple-
mentations satisfy a certain formula is vacuously true. In the
case that D is bisimilar to E every implementation of E is
an implementation of D and vice versa. Thus, the answer
to the MTS control problem with D replacing E is the
same answer as that of E. We analyse D to check whether
all its implementations are controllable, some of them are

controllable, or none of them are controllable. We construct
variants D∀ and D∃ of D where all nondeterminism is
removed by renaming actions. In D∀ the environment chooses
which maybe transitions to implement and in D∃ the controller
chooses which maybe transitions to implement. Using D∀ and
D∃ we create control problems that check the “all” and “some”
cases of the control problem.

Definition 5.3: Consider an MTS E = (S,A,∆r,∆p, s0)
and a set of controllable actions Ac ⊆ A. Let D =
(S′, A, ρr, ρp, s0) be the sub-MTS extracted from E as in
Definition 5.2. We define D∀ = (SD∀ , AD∀ ,∆D∀ , s0) as
follows:

• SD∀ = S′ ∪ {(s, 1) | ∅ 6= ρr(s) ⊆ Ac}
• AD∀ = A× S ∪ {`1}
• ∆D∀ =
{(s, (a, s′), s′) | (s, a, s′)∈ρr and ρr(s) 6 ⊆ Ac} ∪
{(s, (a, s′), s′) | (s, a, s′)∈ρp, a/∈Ac and ρr(s)6⊆Ac} ∪
{(s, `1, (s, 1)) | ∅6=ρr(s)⊆Ac} ∪
{((s, 1), (a, s′), s′) | (s, a, s′)∈ρr and a∈Ac} ∪
{(s, (a, s′), s′) | (s, a, s′)∈ρp, a/∈Ac and ∅6=ρs(s)⊆Ac}∪
{(s, (a, s′), s′) | ρr(s)=∅ and (s, a, s′)∈ρp}

All the new actions are uncontrollable. We note that D∀ is very
similar to E∀ except that D∀ is made effectively deterministic
by renaming all actions. As before, we extend the definition
of all fluents in ϕ to include the copies (a, s) of actions in
A. That is, if a fluent includes the action ` then its modified
version includes also the action (`, s).

Lemma 5.4: (Deterministic All) Given an MTS control
problem E = 〈E,ϕ,Ac〉 where E = (S,A,∆r,∆p, s0). If D
is the MTS obtained from E by applying Definition 5.2 and
D∀ is obtained from D by Definition 5.3, then the following
holds. The answer for E is all iff the LTS control problem
D∀ = 〈D∀,X{`1}(ϕ), Ac〉 is realisable.

The proof is very similar to that of Lemma 4.1 except that
we restrict attention to deterministic implementations.

We now turn to the case of distinguishing between the none
case and all or some. In this case, we can apply Definition 4.2
to D. Denote the resulting LTS as D∃. We note that as D has
no nondeterminism on required transitions it follows that D∃

is deterministic.

Lemma 5.5: (Deterministic None) Given an MTS control
problem E = 〈E,ϕ,Ac〉 where E = (S,A,∆r,∆p, s0). If D
is the MTS obtained from E by applying Definition 5.2 and
D∃ is obtained from D by Definition 4.2, then the following
holds. The answer for E is none iff the LTS control problem
D∃ = 〈D∃,XA(ϕ), AD∃ − (A−Ac)〉 is not realisable.

The proof is very similar to that of Lemma 4.2 except that
we (naturally) restrict attention to deterministic implementa-
tions.

It follows that the following algorithm provides the answer
to the MTS control problem in the case that we restrict
attention to deterministic implementations.

Algorithm 3: (MTS Deterministic Control) Given an MTS
control problem E = 〈E,ϕ,Ac〉. If D is the LTS obtained
from E by applying Definition 5.2 and D∀ is the LTS obtained
by applying Definition 5.3 to D and D∃ is the LTS obtained

by applying Definition 4.2 to D, then the answer for E is
computed as follows.

• All, if there exists a solution for D∀ =
〈D∀,X{`1}(ϕ), Ac〉

• None, if there is no solution for D∀ and no solution for
D∃ = 〈D∃,XA(ϕ), AD∃ − (A−Ac)〉.

• Some, otherwise.

Theorem 5.2: (MTS Deterministic Control) Given an MTS
control problem E = 〈E,ϕ,Ac〉 the answer to the control
problem of E , where implementations are restricted to deter-
ministic implementations, is decidable in 2EXPTIME in ϕ and
polynomial in E.

Proof: The Theorem follows from noticing that both D∀

and D∃ are deterministic. Thus, the simpler algorithm for
checking realisability of deterministic LTS from Theorem 2.2
applies.

VI. Discussion and Related Work

The software engineering community has studied the con-
struction of event-based operational models in various forms.
For instance, construction of such models from scenario-
based specifications(e.g. [21]) has received much attention as
example-based descriptions are close to wide-spread specifi-
cation approaches such as message sequence charts and use-
cases. Integration of fragmented, example-based specification
into a state-based model can be analysed via model checking,
simulation, animation and inspection, the latter aided by
automated slicing and abstraction techniques.

Synthesis that also combines some form of declarative
specification (e.g. temporal logics) has also been studied with
the aim of providing an operational model on which to further
support requirements elicitation and analysis [22]. The work
presented herein shares the view that model elaboration can
be supported through synthesis and analysis. Furthermore,
analysis of a partial domain model for realisability of system
goals by means of a controller allows prompting further
elaboration of both domain model and goals.

Enacting automatically synthesised plans is a strategy
adopted in various software engineering domains. For in-
stance, Inverardi et al. automatically build glue code and
component adaptors in order to achieve safe composition
at the architecture level [4], and in particular in service
oriented architectures [23]. Such approaches build on classical
controller synthesis and consequently require fully specified
domain models, hence their application is limited in earlier
phases of development. The results that we present in this
paper allows reasoning about the feasibility of constructing
such glue code and adaptors without necessarily requiring the
effort of developing a full domain model.

Architectural design of self-adaptive systems often includes
layers that must deal with mission planning. In these layers, al-
gorithms capable of producing at run-time strategies that adapt
to changes in the environment, in the system’s capabilities or
goals is required. Hence, these systems can leverage automated
controller synthesis [24], [2]. We speculate that controller
synthesis techniques that support partial domain knowledge,

such as the one presented here, may allow deploying self-
adaptive systems that work in environments for which there is
more uncertainty.

In [17], we solved the MTS control problem for a restricted
setting that considers only the case where both the MTS
specification and its implementations are deterministic. Such
case can be considered an even simpler case of the one
described in Section V-A. However, as we have shown, the
problem of MTS control with deterministic MTS specification
and nondeterministic implementations is essentially reduced to
the one presented in [17].

Our work builds on a particular formalism for describing
partial behaviour models (MTS [12]), however, there are
many formalisms that have been developed with the notion of
partiality explicitly embedded. Notably, there exist many (more
expressive) variants of MTS including Disjunctive [25], and
Parametric [26] MTS. The results presented in this work would
have to be revisited in the context of other partial behaviour
formalisms. However, since many complexity results for MTS
hold for extensions such as DMTS, we believe that our results
could also extend naturally to these extensions.

Initial attention to partial models was focused on property
verification (cf. [11], [27], [28]). First, three-valued model
checking was defined [11] and shown to have the same com-
plexity as that of model checking. Subsequently, generalised
model checking [27] improves the accuracy of results: three-
valued model checking may result in the answer ”some” even
when no implementations satisfy the property. Generalised
model checking resolves this but at a high computational
complexity [28].

In order to reason about generalised model checking one
has to go from the model of transition systems (for 3-valued
model checking) to that of a game. Our definition of MTS
control is more similar to generalised model checking than
to 3-valued model checking. We find it interesting that both
MTS and LTS control problems are solved in the same model
(that of a game) and that MTS control does not require a more
general model.

Another related subject is abstraction of games. For ex-
ample, in [29] abstraction is applied to games in order to
enable reasoning about infinite games. Similarly, in [30]
abstraction refinement is generalised to reason about larger
games. Applying abstraction allows making assumptions about
which states can be reasoned about together. In our approach,
we work with a given abstraction from the start, the MTS,
rather than abstracting a more detailed model.

We have mentioned some of the many results that exist
on controller synthesis and realizability of temporal logic.
Our work builds on LTS control using the 2EXPTIME-
completeness of LTL controller synthesis [9] and also allows
use of more efficient synthesis defined over restricted subsets
of LTL (cf. [31], [14]). The latter results show that in some
cases synthesis can be applied in practice. Similar restrictions,
if applied to MTS control combined with our reductions,
produce the same reduction in complexity.

Our previous work on usage of controller synthesis in
the context of LTSs has been incorporated in the MTSA

toolset [32]. We have implemented a solver to GR(1) [14]
formulas in the context of the LTS control problem [8].

In addition to dealing with partial behaviour models, our
work allows non-deterministic behaviour. Non-determinism
and partial observation (the existence of actions which can nei-
ther be controlled nor monitored by the controller) are closely
related challenges in the realm of games. Partial observation
boils down to safety imperfect-information games [33]. Very
recently, we have presented two techniques for synthesis of
LTS controllers in the context of nondeterministic environ-
ments [34]. Each technique produces controllers for different
interactions modes between the environment and the controller.
One similar to that of IA legal environments and the other
inspired in the interaction among players in an imperfect-
information game.

Partial observable Markov Decision Processes (MDPs)
are used in robotics for planning purposes (e.g. [35]). A
key difference is that the environment is given in terms
of stochastic behaviour of actions and that the aim is the
maximization of cumulative payoffs, there are no hard goal.
Optimal policies under hard co-safety properties has only been
recently addressed in the robotics community ([36]).

In [5] safety properties (and bounded-liveness) are used
as goals in an LTS-like framework. The technique assumes
input enabledness but the resulting controller is legal, in the
sense of interface automata – i.e. the controller cannot block
uncontrollable actions, nor the environment block controllable
ones. Thus, the controller disables all controllable transitions
that are not enabled from every possible nondeterministic
successors. Hence, the approach in [5] cannot be reused for
the general interface automata control problem since liveness
requires special treatment as shown, e.g., in [8].

VII. Conclusions and Future Work

We have presented a general technique for answering the MTS
control problem. In other words, an algorithm for answering if
all, some or none of the implementations described by a partial
behaviour model in the form of an MTS can be controlled to
achieve a given goal. Our technique is general in the sense that
it does not restrict MTS to deterministic specifications nor does
it limit the implementations considered to deterministic ones.

We show that the answer to the MTS control problem
can be computed by considering two LTS control problems
representing the “hardest” and “easiest” implementations to
control. In addition, we identified restricted versions of the
MTS control problem which can be answered more efficiently
as it is not necessary to consider control of non-deterministic
implementations.

For the general case, the two LTS control problems must be
applied to nondeterministic LTS which means an exponential
complexity in the size of the domain model. However, for
the restricted MTS control problems identified, we show
that it is enough to consider the two deterministic LTS
control problems, reducing the complexity of the problem to
polynomial in the size of the domain model.

The complexity of deciding controllability also depends on
the complexity of the goal to be controlled. In the general case

(general FLTL formula) the complexity is double exponential
in the size of the goal. However, our technique can build on
existing results for solving more efficiently sub-logics. Hence,
for GR(1) formulae the complexity is remains polynomial.

We believe that from the LTS control problems that are
presented in this paper it is possible to construct “templates”
for the control of all implementations and “templates” for the
control of “controllable” implementations when only some are
controllable. Extraction of these templates and their usage for
the refinement of the domain models or their restriction is an
interesting area for further studies.

We are currently working on implementation of these
algorithms and their incorporation within the realisability
framework of MTSA [32]. In spite of the complexity of
the control problem for nondeterministic LTS our initial
experiments are encouraging and we hope that the cases that
arise in practice will not incur the full theoretical complexity
of the solution.

References

[1] M. Mazo, A. Davitian, and P. Tabuada, “Pessoa: A tool for embedded
controller synthesis,” in Proc. of the 22nd Int. Conf. on Computer
Aided Verification, ser. CAV’10. Springer-Verlag, 2010, pp. 566–569.

[2] F. Dalpiaz, P. Giorgini, and J. Mylopoulos, “An architecture for
requirements-driven self-reconfiguration,” in Proc. of the 21st Int. Conf.
on Advanced Information Systems Eng., ser. CAiSE ’09. Springer-
Verlag, 2009, pp. 246–260.

[3] W. Heaven, D. Sykes, J. Magee, and J. Kramer, “Soft. Eng. for
self-adaptive systems,” B. H. Cheng, R. Lemos, H. Giese, P. Inverardi,
and J. Magee, Eds. Springer-Verlag, 2009, ch. A Case Study in
Goal-Driven Architectural Adaptation, pp. 109–127.

[4] P. Inverardi and M. Tivoli, “A reuse-based approach to the correct
and automatic composition of web-services,” in Int. workshop on Eng.
of Software Services for Pervasive Environments, ser. ESSPE ’07.
ACM, 2007, pp. 29–33.

[5] E. Letier and W. Heaven, “Requirements modelling by synthesis of
deontic input-output automata,” in 35th Int. Conf. on Software Eng.,
ser. ICSE 2013. Kluwer Academic Publishers, 2013.

[6] M. Jackson, “The world and the machine,” in Proc. of the 17th Int.
Conf. on Soft. Eng., ser. ICSE ’95. ACM, 1995, pp. 283–292.

[7] N. D’Ippolito, V. A. Braberman, N. Piterman, and S. Uchitel, “Synthesis
of live behaviour models for fallible domains,” in ICSE, R. N. Taylor,
H. Gall, and N. Medvidovic, Eds. ACM, 2011, pp. 211–220.

[8] N. D’Ippolito, V. Braberman, N. Piterman, and S. Uchitel, “Synthesising
non-anomalous event-based controllers for liveness goals,” ACM Tran.
Softw. Eng. Methodol., vol. 22, 2013.

[9] A. Pnueli and R. Rosner, “On the synthesis of a reactive module,” in
Proc. of the 16th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, ser. POPL ’89. ACM, 1989, pp. 179–190.

[10] W. Swartout and R. Balzer, “On the inevitable intertwining of
specification and implementation,” Communications of the ACM,
vol. 25, no. 7, pp. 438–440, 1982.

[11] G. Bruns and P. Godefroid, “Model checking partial state spaces
with 3-valued temporal logics,” in 11th Int. Conf. on Computer Aided
Verification, ser. LNCS, vol. 1633. Springer, 1999, pp. 274–287.

[12] K. Larsen and B. Thomsen, “A Modal Process Logic”, in Proc. of 3rd
Annual Symposium on Logic in Computer Science (LICS’88). IEEE
Computer Society Press, 1988, pp. 203–210.

[13] D. Giannakopoulou and J. Magee, “Fluent model checking for event-
based systems,” in Proc. of the 9th European Soft. Eng. Conf. held
jointly with Int. Symp. on Foundations of Soft. Eng., ser. ESEC/FSE-
11. ACM, 2003, pp. 257–266.

[14] R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Sa’ar,
“Synthesis of reactive(1) designs,” J. Comput. Syst. Sci., vol. 78, no. 3,
pp. 911–938, 2012.

[15] R. M. Keller, “Formal verification of parallel programs,” Communica-
tions of the ACM, vol. 19, pp. 371–384, July 1976.

[16] J. H. Reif, “Universal games of incomplete information,” in STOC, M. J.
Fischer, R. A. DeMillo, N. A. Lynch, W. A. Burkhard, and A. V. Aho,
Eds. ACM, 1979, pp. 288–308.

[17] N. D’Ippolito, V. Braberman, N. Piterman, and S. Uchitel, “The modal
transition system control problem,” in Int. Symp. on Formal Methods,
ser. LNCS, vol. 7436. Springer-Verlag, 2012, pp. 155–170.

[18] A. van Lamsweerde, Requirements Eng. - From System Goals to UML
Models to Software Specifications. Wiley, 2009.

[19] N. D’Ippolito, “Technical Report.”
[20] D. Martin, “Borel determinacy,” The annals of Mathematics, vol. 102,

no. 2, pp. 363–371, 1975.
[21] Y. Bontemps, P.-Y. Schobbens, and C. Löding, “Synthesis of open

reactive systems from scenario-based specifications,” Fundamenta
Informaticae - Application of Concurrency to System Design
(ACSD’03), vol. 62, pp. 139–169, February 2004.

[22] C. Damas, B. Lambeau, and A. van Lamsweerde, “Scenarios, goals, and
state machines: a win-win partnership for model synthesis,” in Proc. of
the Int. Symp. on Foundations of Software Eng., ser. FSE’06. ACM,
2006, pp. 197–207.

[23] A. Bertolino, P. Inverardi, P. Pelliccione, and M. Tivoli, “Automatic
synthesis of behavior protocols for composable web-services,” in Proc.
of the joint meeting of the European Software Eng. Conf. and the
Symposium on the Foundations of Soft. Eng., ser. ESEC/FSE ’09. ACM,
2009, pp. 141–150.

[24] D. Sykes, W. Heaven, J. Magee, and J. Kramer, “Plan-directed
architectural change for autonomous systems,” in Proc. of the Conf.
Specification and Verification of Component-Based Systems, ser.
SAVCBS 2007, pp. 15–21.

[25] K. G. Larsen and L. Xinxin, “Equation solving using modal transition
systems,” in LICS. IEEE Computer Society, 1990, pp. 108–117.

[26] N. Benes, J. Kretı́nský, K. G. Larsen, M. H. Møller, and J. Srba,
“Parametric modal transition systems,” in ATVA, ser. LNCS, vol. 6996.
Springer, 2011, pp. 275–289.

[27] G. Bruns and P. Godefroid, “Generalized model checking: Reasoning
about partial state spaces,” in 11th Int. Conf. on Concurrency Theory,
ser. LNCS, vol. 1877. Springer, 2000, pp. 168–182.

[28] P. Godefroid and N. Piterman, “Ltl generalized model checking
revisited,” in Proc. of the 10th Int. Conf. on Verification, Model
Checking, and Abstract Interpretation, ser. VMCAI ’09. Springer-
Verlag, 2009, pp. 89–104.

[29] P. Stevens, “Abstract games for infinite state processes,” in Int. Conf.
on Concur. Theory, ser. LNCS, vol. 1466. Springer, 1998, pp. 147–162.

[30] T. A. Henzinger, R. Jhala, and R. Majumdar, “Counterexample-guided
control,” in 30th International Colloquium on Automata, Languages and
Programming, ser. LNCS, vol. 2719. Springer, 2003, pp. 886–902.

[31] E. Asarin, O. Maler, A. Pnueli, and J. Sifakis, “Controller synthesis for
timed automata,” in Proc. of the IFAC Symposium on System Structure
and Control, 1998.

[32] N. D’Ippolito, D. Fischbein, M. Chechik, and S. Uchitel, “Mtsa:
The modal transition system analyser,” in Proc. of the Int. Conf. on
Automated Soft. Eng., ser. ASE ’08. IEEE, 2008, pp. 475–476.

[33] K. Chatterjee, T. A. Henzinger, and B. Jobstmann, “Environment
assumptions for synthesis,” in Proc. of the 19th Int. Conf. on
Concurrency Theory, ser. CONCUR ’08. Springer-Verlag, 2008, pp.
147–161.

[34] N. D’Ippolito, V. Braberman, N. Piterman, and S. Uchitel, “Synthesis
of event-based controllers for non-deterministic environments,” in
Submitted to Int. Symp. on Foundations of Soft. Eng.. available at
http://www.doc.ic.ac.uk/ srdipi/techacsd2014/dbpu2014a.pdf.

[35] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics (Intelligent
Robotics and Autonomous Agents). The MIT Press, 2005.

[36] A. Ulusoy, S. L. Smith, X. C. Ding, C. Belta, and D. Rus, “Optimality
and robustness in multi-robot path planning with temporal logic
constraints,” I. J. Robotic Res., vol. 32, no. 8, pp. 889–911, 2013.

