
Minimising Makespan of Discrete Controllers: A Qualitative Approach

Ezequiel Castellano1, Victor Braberman2, Nicolás D’Ippolito2, Sebastián Uchitel2,3 and Kenji Tei4

Abstract— Qualitative controller synthesis techniques pro-
duce controllers that guarantee to achieve a given goal in the
presence of an adversarial environment. However, qualitative
synthesis only produces one controller out of many possible
solutions and typically does not provide support for expressing
preferences over other alternatives. In this paper, we thus
present a formal approach to reason about preferences qual-
itatively, restricting attention to makespan of discrete event-
based controllers for reachability goals. Time is reasoned upon
symbolically, which relieves the user from providing concrete
quantitative measures. In particular, we study the scenario in
which durations of individual activities are not known up-front.
We first show how controllers can be symbolically and fairly
compared by fixing the contingencies. Then, we present an
algorithm to produce controllers that are makespan-minimising.

I. INTRODUCTION

The problem of automatically synthesising event-based
solutions from environment models and qualitative goal
specifications has been widely studied [Ramadge and Won-
ham, 1984, Pnueli and Rosner, 1989, Cimatti et al., 2003,
Piterman et al., 2006]. In these problems, the environment
and the goals are specified by using a formal language. The
environment is typically modelled as a state machine whose
actions are partitioned into controllable and uncontrollable
actions. The controller synthesis problem is to automatically
produce a solution, i.e., a controller, that by only disabling
controllable actions guarantees the satisfaction of the goals.
In particular, we focus on reachability and safety goals which
are of interest to supervisory control theory [Ramadge and
Wonham, 1984], conformant [Goldman and Boddy, 1996]
and contingent [Pryor and Collins, 1996] planning.

Qualitative control problems are boolean in the sense
that a controller satisfies a set of goals, or it does not.
When a qualitative control problem has a solution, we say
it is realisable. Realisable control problems may allow for
several possible solutions. Different solutions may differ in
the strategy which they apply to satisfy the goals. Typically,
based on the arrival of monitored actions, the strategies
implemented by controllers decide which and when to start
activities. For instance, regarding end-to-end makespan, a
controller that starts several activities concurrently instead of
executing them sequentially can be, intuitively, considered
as a better strategy, no matter which the durations of the
activities are. Unfortunately, qualitative synthesis procedures

1SOKENDAI & National Institute of Informatics, Japan
ecastellano@nii.ac.jp

2University of Buenos Aires & CONICET, Argentina {vbraber,
ndippolito, suchitel}@uba.dc.ar

3Imperial College London, United Kingdom
4Waseda University, Japan ktei@aoni.waseda.jp

are, so far, oblivious to such considerations. The controller
produced is one of the many alternatives and users cannot
specify their preferences; e.g., lower-makespan controller.
Thus, it is desired to have the ability to express preferences
and automatically compute a solution from a set of possible
solutions to a control problem accordingly.

Synthesis and planning techniques that allow expressing
preferences exist, such as those regarding performance or
reliability. Such quality attributes are modelled by introduc-
ing a quantitative aspect to the system specification, which
imposes a preference order on the controllers that satisfy
the qualitative part of the specification [Bloem et al., 2009,
Chatterjee et al., 2005, Thrun et al., 2005]. However, from
a practical perspective, these approaches require modelling
quality attributes quantitatively, whereas in many cases, such
detailed representation is not available, possible, or desired.

In this paper, we define lower-makespan as our preference
and introduce a formal approach to qualitatively reason about
makespan of discrete event-based controllers for safety and
reachability goals. To reason qualitatively about makespan
of controllers, we introduce a symbolic time metric derived
from Parametric Timed Automata (PTA) [Alur et al., 1993]
semantics. This metric requires modelling sub-tasks of the
problem which take time as activities. However, no quan-
titative information about the duration of the activities is
required. Then, we define a mechanism to compare makespan
of controllers under unknown durations of activities and
event contingencies produced by uncontrollable behaviour.
Such a comparison is made through exhaustive analysis
by using a symbolic computation over the parameters of a
PTA [Henzinger, 2000] and Satisfiability Modulo Theories
(SMT) solving [Barrett and Tinelli, 2018]). The parameters
of the PTA represent the uncertain duration of the activities.
Then, we define makespan-minimising controllers by using
the symbolic comparison and we introduce an algorithm that
produces a makespan-minimising controller qualitatively.

The paper is structured as follows. Section II introduces
the background. Section III presents the control problem
with activities. Section IV shows an example that is used
throughout the rest of the paper. Section V defines how
to compare the makespan of a pair of discrete controllers
without using quantitative information. Section VI defines
makespan-minimising controllers and presents an algorithm
that produces a makespan-minimising controller. Section VII
introduces the related work. Finally, Section VIII presents the
conclusions and directions for our future work.

II. BACKGROUND

We use a standard definition of LTS to model behavioural
models and parallel composition [Baier and Katoen, 2008]
to model the interaction between LTSs. Parallel composition
is defined as an LTS that models the asynchronous execution
of composed models, interleaving non-shared actions while
forcing synchronisation on shared actions. LTS models are
deterministic, which means that given a state and an action
there is at most one successor. We assume that the actions
Σ is partitioned into controllable Σc and uncontrollable Σu
actions (Σ = Σc ∪ Σu).

Definition 1 (LTS): A deterministic LTS is a tuple
(Q,Σ,∆, q

0
), where Q is a finite set of states,

Σ ⊆ Act is its alphabet, Act is the set of observable
actions, ∆ ⊆ (Q × Σ × Q) is a transition relation,
q0 ∈ Q is the initial state, and deterministic means
∀q ∈ Q ∀` ∈ Σ {(q, `, q′) | (q, `, q′) ∈ ∆} ≤ 1.

Throughout the paper we use the following notations.
- Step: q `−→ q′ is equivalent to (q, `, q′) ∈ ∆.
- Enabled Actions: ∆(q) = {` | q `−→ q′}.
- Successors: ∆(q, `) = {q′ | q `−→ q′}.
- Enabled Controllable Actions: ∆c(q) = ∆(q) ∩ Σc.
- Enabled Uncontrollable Actions: ∆u(q) = ∆(q) ∩ Σu.

Besides, when the members of a tuple are not explicitly
described we assume them to be indexed by the name of the
tuple. For instance, given an LTS M we refer to its members
as M = (QM ,ΣM ,∆M , qM0

) with qM a state of QM .
Definition 2 (Parallel Composition): The parallel

composition (‖) of two LTSs M and N , is a
symmetric operator such that M‖N = (QM ×
QN ,ΣM ∪ ΣN ,∆M‖N , (qM0

, qN0
)), where ∆M‖N is

the smallest relation that satisfies the following rules:
qM

`−→MqM
′

(qM ,qN)
`−→M‖N (qM ′,qN)

`∈ΣM\ΣN
qN

`−→NqN
′

(qM ,qN)
`−→M‖N (qM ,qN ′)

`∈ΣN\ΣM

qM
`−→MqM

′, qN ,
`−→N ,qN

′

(qM ,qN)
`−→M‖N (qM ′,qN ′)

`∈ΣM∩ΣN

We use Fluent Linear Temporal Logic (FLTL) [Gian-
nakopoulou and Magee, 2003] as the language for describing
properties. FLTL is a linear-time temporal logic for reasoning
about fluents instead of state-based propositions. A fluent
Fl is defined by a pair of sets and a Boolean value: Fl =
〈IFl, TFl, InitFl〉, where IFl ⊆ Act is the set of initiating
actions, TFl ⊆ Act is the set of terminating actions and
IFl ∩ TFl = ∅. A fluent may be initially true or false
as indicated by InitFl. Every action ` ∈ Act induces a
fluent, namely ˙̀ = 〈`, Act \ {`}, false〉. The logic has the
same expressiveness as standard LTL [Baier and Katoen,
2008]. However, as fluents can be used to overlay state-
based propositions on an event-based model, FLTL allows
for a more compact representation of properties.

Let F be the set of all possible fluents over the observable
actions Act. An FLTL formula is defined inductively by us-
ing the standard Boolean connectives and temporal operators
X (next), U (strong until) as follows:

ϕ ::= Fl | ¬ϕ | ϕ ∨ ψ | Xϕ | ϕUψ

where Fl ∈ F . As well, we use the standard operators
∧, ♦ (eventually), � (always), and W (weak until). FLTL
formula satisfaction is computed over traces and fluents, it
is standard and omitted. We denote that a possibly infinite
trace π satisfies an FLTL formula ϕ as π |= ϕ.

III. CONTROL PROBLEMS WITH ACTIVITIES

The problem of controller synthesis can be expressed as
follows. Given an LTS model E of the environment, a goal
G expressed in FLTL, and a set of controllable actions Σc,
the aim is to build an LTS C that i) when the controller
C is concurrently executed with E (i.e., E‖C), it does not
block any uncontrollable action in the environment, and
ii) G is satisfied in every trace of E‖C. The notion of
a controller that does not block uncontrollable actions is
built on the concept of the legal environment for Interface
Automata [de Alfaro and Henzinger, 2001]. Intuitively, C is
a legal environment for E, when in every state (qE , qC) of
E‖C, an uncontrollable action is enabled in (qE , qC) iff it
is also enabled in qE . In this paper, we restrict attention to
goals of the form G = �S ∧ ♦P , where S (safety goals)
and P (reachability goals) are propositional FLTL formulas.

In LTS models, time only passes on states, and transitions
change states instantaneously. A priori, the amount of time
that passes between two different actions is unknown. The
standard way of modelling the passing of time in LTS is to
incorporate actions that represent the start and the end of
activities which take time. This is the approach we adopt in
this paper. We assume that all activities that have duration
will be modelled with start and end actions. We also assume
that, if getting a chance, the controller is fast enough to be
ready to take enabled transitions. Thus, states in which there
is at least one outgoing controllable action (∆c(q) 6= ∅) are
considered to the be ones in which time does not pass. Such
states are called transient states [Letier and Heaven, 2013].

Thereupon, we require LTSs to be annotated with a set of
activity definitions AD = (A, Start, Ends). A is a set of
symbols that represent each activity α uniquely. The function
Start : A → Σc defines the controllable action that starts
an activity. The function Ends : A → 2Σu defines the
uncontrollable actions that determine the end of an activity.
These two functions must be defined for each activity α ∈ A.
An action can be related to at most one activity. Given a
path q0

`1−→ . . .
`k−→ . . .

`i−→ . . .
`m−−→ qm, we say that

activity α ∈ A is running in the state qm, if there exists
a k ≤ m such that `k = Start(α) and `i 6∈ Ends(α)
for every k < i ≤ m. That is to say, the activity has
started but not ended at the given state. We also require,
w.l.o.g., the set of running activities ζ(q) to be the same
for all paths leading to a given state q. We assume that
an activity cannot be started again while running and that
no activities are running in the goal states of a controller.
The goal states QG are those in QE‖C that can be reached
through a path from the initial state that does not contain
another state satisfying the reachability property. In other
words, it exists a path q0

`1−→ . . .
`m−−→ qm

`G−→ qG s.t

`1 . . . `m 6|= G ∧ `1 . . . `m, `G |= G. Note that every path
of E‖C satisfies the safety requirements.

Definition 3: (Control Problem with Activities) Given an
LTS E = (QE ,Σ,∆E , qE0

), a set of activity definitions
AD = (A, Start, Ends), a safety and reachability goal
G = �S ∧♦P expressed in FLTL, and a set of controllable
actions Σc ⊆ Σ, the solution to the control problem
E = 〈E,AD, G,Σc〉 is to find a deterministic LTS C =
(QC ,Σ,∆C , qC0

) such that i) C is a legal environment for
E, ii) E‖C is deadlock free, and iii) every infinite trace π
in E‖C satisfies G (π |= G).

In controller synthesis problems with reachability goals,
algorithms that produce memoryless solutions have linear
complexity in the size of the problem. These controllers are
a sub-graph of the LTS defined by the parallel composition
of the environment with the LTSs that represent the fluents
used to describe the goals (E‖Mfl1

‖ . . . ‖Mflk). From a
game-theoretical perspective, this composition represents
the arena of the game between the environment and the
controller. Furthermore, universal controllers [Thomas, 1995]
are those that subsume any other memoryless controller.
If we restrict attention to the sub-graph resulting from
removing all outgoing transitions from goal states, universal
controllers have the form of directed acyclic graphs (DAG).
This observation is important to the rest of the paper.

IV. INDUSTRIAL AUTOMATION EXAMPLE

Assume an industrial automation setting, in which dif-
ferent product types are to be produced through a variety
of processing activities according to given constraints. The
specification of the control problem is given as a set of LTSs
describing the behaviour of the environment (Figure 1) and
a set of FLTL formulas describing production constraints
(Figure 2). For simplicity, we assume that there are two
product types (T1 and T2). Type T1 products require activity
A3, while T2 type products require activity A1 and A2.
After finishing the required activities, products must undergo
a quality check (R1). When the quality check fails, it is
required to do a repair activity (R2). Once the product has
passed the quality requirements, it is signalled with the action
done (R3). Additionally, for safety reasons, A2 cannot be
started while A1 is ongoing (R4). The goal is to produce one
product of the required type (♦ ˙done) while always satisfying
the production constraints (�(R1 ∧R2 ∧R3 ∧R4)).

0 1

ChoiceProcessi

eAi

sAi
checkQA

0 1

QA

okQA

failQA

0 1

RepairProcess

sfix

efix
0

2done

done

type1

1

type2

Fig. 1. LTS components describing the behaviour of the of the environment
E = Process1‖Process2‖Process3‖Choice‖QA‖RepairProcess.1

199K denotes uncontrollable actions, and → denotes controllable actions.

2Grey states denote non-transient states.

R1) ˙checkQA =⇒ ((TC1 ∧AC3)∨ (TC2 ∧AC1 ∧AC2))
R2) ˙sfix =⇒ QAFailed
R3) ˙done =⇒ QAChecked
R4) ˙sA1

=⇒ ¬OngoingA1

Fig. 2. Production constraints described in FLTL.

Note that the formulas described in Figure 2 are combi-
nations of the fluents described in Figure 3 and fluents ˙̀

induced by an action `. Fluents TCi and ACi are described
with the index i for brevity. TCi denotes the product type
choice while ACi denotes that the activity Ai has finished.
QAChecked holds, when a product satisfies the quality
requirements. QAFailed holds when the quality check fails
but the product is not repaired yet. OngoingA1 is a fluent
that holds when A1 has started (sA1

) but not ended yet (eA1
).

a) TCi = 〈{typei}, {done}, false〉
b) ACi = 〈{eAi}, {done}, false〉
c) QAChecked = 〈{okQA, efix}, {type1, type2}, false〉
d) QAFailed = 〈{failQA}, {efix}, false〉
e) OngoingA1 = 〈{sA1

}, {eA1
}, false〉

Fig. 3. Fluent definitions used to describe the formulas of Figure 2.

The synthesis problem is to build a controller that satisfies
production requirements by controlling processing activities,
while the choice of product type and the result of the quality
check are unknown in advance. Various solutions to this
problem exist, and current synthesis techniques are likely
to yield the controller C2 of Figure 4; whereas the controller
C1 in the same figure is another valid solution.

type1

type2

sA3 checkQA

failQA

sfix

done

done

type1

type2
done

C1

C2

okQA

done

eA3
eA2

efix

failQA

checkQA okQA

sA2

sA1

eA1 eA2

eA1

efixsfix

eA2
sA1

sA1 eA1
sA2

eA2

eA3sA3

Fig. 4. Two possible controllers for the same problem.1,2

Regarding makespan, C1 seems to be better than C2. It
is because, for products of type T2, C1 will always run
the two activities concurrently, while C2 will perform them
sequentially. Intuitively, C1 will perform as well as or better
than C2 for any fixed choice of the environment (the type of
product to be built and the result of the quality check).

V. SYMBOLIC COMPARISON OF CONTROLLERS

To compare the makespan of controllers, we compute a
symbolic expression that describes the time a controller takes
to reach its goal. The symbolic expression here is composed

of parameters which represent the time each activity takes. A
particular strategy for the environment must be fixed to allow
fine-grained comparison between controllers’ strategies. That
means how uncontrolled contingencies pan out. In this
Section, we first formalise how to deal with contingencies
by using schedulers (Section V-A). Then, we give a timed
semantics to LTSs based on PTA (Section V-B) and show
how to obtain a symbolic expression that represents the
makespan of a controller using that PTA (Section V-C). The
parameters of the PTA stand for activity duration as well as
a parameter representing the end-to-end makespan. By using
parameters, we model that time durations are unknown a
priori. Finally, we define how to compare a pair of controllers
by comparing their symbolic expressions (Section V-D).

A. Comparing under the Same Contingencies

When comparing controllers, we should pay attention to
how uncontrollable behaviour may occur. For instance, let
us consider the following unfair comparison between the
two controllers mentioned in Section IV. On the one hand,
controller C1 requires the final repair while constructing
a product of type T1. On the other hand, controller C2

does not require the repair while building a product of type
T2. This comparison could suggest that controller C2 has
a lower makespan, but the conclusion is obviously flawed
because the contingencies of which type of product is built
and whether a repair is required or not do not depend on
the controller itself and should not affect the comparison.
Therefore, contingency scenarios should be consistent when
a comparison is performed.

We use schedulers [Bellman, 1957] to formalise how to
resolve contingencies at a given state of the environment.
We assume that schedulers are Markovian [Bellman, 1957]
and yield a decision only based on the current environment
state regardless of the history of states traversed. Thus,
we define schedulers as a function σ : QE × 2Σ →
2Σ that picks a subset of enabled actions A (K1), which
stand for the actions that might be enabled by an arbitrary
controller (Definition 4). The conditions defined aim to
model schedulers that, we believe, ensure a fair comparison.
This definition distinguishes actions into three categories:
controllable, ending, and other uncontrollable actions.

Definition 4 (Scheduler): Given an environment E and a
set of activity definitions AD, a scheduler is a function σ :
QE × 2Σ → 2Σ that satisfies the following conditions:
K1) σ(qE , A) ⊆ A ∩∆E(qE)
K2) (|σ(qE , A)| = 1 ∧ σ(qE , A) ⊆ Σc ∪ (Σu \ Σe))∨

(σ(qE , A) ∩ Σe = σ(qE , A))
K3) (σ(qE , A) ⊆ Σu)⇒ ∀A′(σ(qE , A

′) = σ(qE , A))
K4) σ(qE , A) ⊆ Σc ⇒ ∀A′ ⊆ ∆E(qE)

((σ(qE , A) ⊆ A′ ⇒ σ(qE , A
′) = σ(qE , A))∧

(σ(qE , A) 6⊆ A′ ∧A′ ∩ Σc 6= ∅ ⇒ σ(qE , A
′) ⊆ Σc))

(σ(qE , A) 6⊆ A′ ∧A′ ∩ Σc = ∅ ⇒ σ(qE , A
′) ⊆ Σu))

where A ⊆ ∆E(qE), qE ∈ QE , and Σe = {` | ` ∈ Σu∧∃α ∈
A ` ∈ Ends(α)}.

Above conditions require schedulers to either pick all
ending actions or exactly one of the other actions (K2). Since

the duration of the activities is unknown, we do not want
schedulers to choose among the ending actions. Besides,
schedulers have to be consistent, regarding the choices of
uncontrollable (K3) and controllable actions (K4). That is, if
possible, they pick the same actions or category.

Schedulers are applied to a controller when executing in
parallel with the environment E‖σC (Definition 5). This
produces an LTS E‖σC that has a subset of the transitions
defined by the standard parallel composition E‖C.

Definition 5 (Scheduled Composition): The scheduled
composition E‖σC is an asymmetric operator defined as the
parallel composition (‖) changing the shared rule of ∆E‖σC
as follows:

qE
`−→Eq

′
E , qC

`−→Cq
′
C , `∈σ(qE1

,∆C(qC1
))

(qE ,qC)
`−→M‖σN (q′E ,q

′
C)

`∈ΣE∩ΣC

B. Timed Semantics of LTS

Our interpretation of time in a discrete controller is based
on PTA [Alur et al., 1993]. PTA is an extension of Timed
Automata (TA) [Baier and Katoen, 2008] that incorporates
final states, clocks and parameters to LTSs. Clocks are real-
valued variables that increase linearly, and parameters are
unknown constants. Clocks can be compared with constant
values or parameters in guards and invariants, which are sets
of linear inequalities that must be satisfied to take a transition
or to stay in a state. These clocks can be reset when taking
a transition. In this work, we use PTA to interpret how time
passes on a controller, when the controller is concurrently
executing with the environment under a given scheduler σ.
Definition 6 presents the Timed Semantics of a controller by
using a PTA. This PTA focuses on the paths between the
initial state and goal states, because makespan is measured
between these states.

Definition 6 (Timed Semantics): Given a control
problem E = 〈E,AD, G,Σc〉, a controller C that is
solution for E , a scheduler σ for the environment E
and goal states QG in E‖σC, we define the timed
semantics of E‖σC as a parametric timed automaton
PTA(E‖σC) = (Σ′, Q′, Q′0, X, P,Qf , I,Θ) as follows:
• a set of actions Σ′ = Σ ∪ {sf , ef}
• a set of states Q′ = QE‖σC ∪ {q0

′, q′f}
• a set of initial states Q′0 = {q0

′}
• a set of clocks X = {xα | α ∈ A} ∪ {xqE | qE ∈
QE} ∪ {xu, xf}

• a set of parameters P = {pα | α ∈ A} ∪ {pqE | qE ∈
QE} ∪ {pf}

• a set of final states Qf = {q′f}
• a state invariant I defined as

I(q) =

xu ≤ 0 if qC is transient∧
α∈ζ(q) xα ≤ pα if qC is not transient

and ζ(q) 6= ∅
xqE ≤ pqE otherwise

for every state q = (qE , qC) ∈ QE‖σC and I(q0
′) =

I(q′f) = xu ≤ 0
• a set of edges Θ s.t. (q1, `, q2, λ, µ) ∈ Θ iff either

- (q1 = (qE1
, qC1

), `, q2 = (qE2
, qC2

)) ∈ ∆E‖σC and

((qC1
is transient and has guard

µ =

{
xu = 0 ∧ xα = pα if ∃α ∈ A ` ∈ Ends(α)
xu = 0 otherwise

) or
(qC1

is not transient and has guard

µ =

{
xα = pα if ∃α ∈ A ` ∈ Ends(α)
xqE1

= pqE1
if ζ(s1) = ∅

)) and reset clocks

λ = {xu} ∪ {xqE2
} ∪ {xα|∃α ∈ A ` = Start(α)}

- q1 ∈ QG and q2= q′f and ` = ef and has guard
µ = (xf = pf) and reset clocks λ = {xu}

- q1 = q0
′ and q2 = q(E‖C)↓σ0

and ` = sf and has
guard µ = (xu = 0) and reset clocks λ = {xu, xf}

The defined PTA features a clock xα and parameter pα
for each activity α. Each clock xα measures the time elapsed
from the start of the activity α to the end of it. The transitions
that are start of activity reset the clock, and the transitions
that are end of activity have a guard. This guard denotes that
the transition can be taken, when the time elapsed by the
clock of the activity is equal to its corresponding parameter
(pα = xα). When the activity is being processed, there are
invariants that restrict the clock of the activity to be greater
than its parameter (xα ≤ pα). Similarly, there is a clock
xqE and parameter pqE for each state (qE , qC), in which
all the outgoing transitions are uncontrollable actions and no
activities are running. The clock xqE measures the time spent
at (qE , qC), and pqE stands for the total sojourn time. Finally,
another clock xf and parameter pf are added to measure the
end-to-end makespan. This clock works as an envelope that
subsumes all the other clocks. That is to say, all the other
parameters that appear in at least one path of the PTA are
bounded by pf . Besides, transient states, i.e., states that have
controllable actions enabled, are forced to be abandoned in
zero time through an invariant (xu < 0). Note that “qC is
transient” refers to the enabled actions in C without applying
the scheduler (∆c

C(qC) 6= ∅). The final states are the goal
states that appear in the scheduled composition.

In Figure 5, we show the PTA of the controller C1 and C2

(in Figure 4) composed in parallel with the environment E
under a scheduler σ that, amongst other things, determines
the product type to be built and that repair is not needed.
Note that the clocks xq1 and parameters pq1 refer to a state
of the environment q1 ∈ QE , which is the initial state of the
composition E of the LTSs from Figure 1. The other state q4

corresponds to the state of the composition in which the LTS
QA is in the state 1, LTS Choice is in the state 2 and the
other LTSs are in the initial state 0. We use the environment
state as id to represent that two controllers have the same
waiting time in the same state of the environment.

C. Consistent Parameters as a Makespan Metric

The parameters in PTA can be instantiated into values.
A parameter valuation for P is an assignment of values in
T (domain of time values) to the parameters in P . Given

xu ≤ 0

[pA1=xA1]
eA1
{xu}[xu =0]

sA2
{xA2 , xu}

[xu =0]
sA1

{xA1}

xu ≤ 0
xA1 ≤ pA1

xA2 ≤ pA2

xA1 ≤ pA1

[pA2=xA2]
eA2
{}

xA2 ≤ pA2

[pA2=xA2]
eA2
{xu}

[pA1=xA1]
eA1
{}

xu ≤ 0xu ≤ 0 xq4 ≤ pq4

[xu =0]
sf1

{xq1 , xf1
}

[xu =0]
checkQA

{xq4}
xq1 ≤ pq1

[pq1=xq1]
type2
{xu}

xu ≤ 0
[xu =0]
done
{xu}

xu ≤ 0

[pq4=xq4]
okQA
{xu}

xu ≤ 0

[pf1
=xf1

]

ef1
{xu}

xu ≤ 0

[pA2=xA2]
eA2
{xu}

[xu =0]
sA1

{xA1}

[pA1=xA1]
eA1
{xu}

xA1 ≤ pA1 xu ≤ 0 xA2 ≤ pA2

[xu =0]
sA2

{xA2}

xu ≤ 0xu ≤ 0 xq4 ≤ pq4

[xu =0]
sf2

{xq1 , xf2
}

[xu =0]
checkQA

{xq4}
xq1 ≤ pq1

[pq1=xq1]
type2
{xu}

xu ≤ 0
[xu =0]
done
{xu}

xu ≤ 0

[pq4=xq4]
okQA
{xu}

xu ≤ 0
[pf2

=xf2
]

ef2
{xu}

PTA(E ||σ C1)

PTA(E ||σ C2)

Fig. 5. PTAs of the controllers and environment defined in Section IV
under a scheduler. Doubly circled states denote final states, invariants are
defined within the states, and transitions are composed by an action ` in
bold, a guard µ=[condition], and reset clocks λ = {x1, . . . , xk}.

a parameter valuation and a PTA, we can obtain a Timed
Automaton (TA) with domain T by replacing the parameters
with the constant values. We use R≥0 as our time domain T .
However, some parameter valuations might fix the conditions
and invariants with values that do not allow any path to
reach a final state from the initial state in the obtained TA. A
parameter valuation is consistent with a PTA, if there exists
at least one path that reaches a final state in the TA obtained
from replacing the parameters with the constant values (i.e.,
the TA has a non-empty language). The set of parameter
valuations that is consistent with a PTA H is known in
the literature as Γ(H) [Alur et al., 1993]. Γ is a symbolic
expression that defines the conditions which a parameter
valuation has to satisfy to be consistent with a PTA. We
denote a parameter valuation, i.e., an assignment of real
values (r1, . . . , rn) ∈ R|P |≥0 to the parameters (p1, . . . , pn) ∈
P , that is consistent with a PTA H as (r1, . . . , rn) H .

In general, computing Γ is undecidable, if there are more
than three clocks in PTAs with cycles [Alur et al., 1993].
However, by using a symbolic procedure [Henzinger, 2000],
Γ can be computed for the fragment of PTAs related to
reachability controllers. This procedure works symbolically
through computing a fixed point of a precondition operator.
Given that the PTAs generated are acyclic, the procedure
terminates, and the fixpoint computation boils down into
a one-pass backwards propagation of expressions. These
expressions are changed at each edge by the precondition
operator. Moreover, for the particular case of the PTAs from
Definition 6, Algorithm 1 shows how to calculate Γ by
using the precondition operator shown in Definition 7. The
algorithm first initialises the formula ψqf of the final state
with True (line 3), and it traverses the other states in the
inverse topological order while initialising the value of the
formula in each state (line 4 - 5). The result of Γ(H) is the
formula of the initial state ψq0

after resetting the clocks, i.e.
replacing all the occurrences by 0. The precondition operator
uses two sub-operators: transition-step B and time-step ⇒.
The transition-step B adds the guard µ to the formula and
resets the clocks x ∈ λ in ψ. The time-step⇒ adds the state

invariant to the formula, but in the non-transient case it uses
a new variable δ and an existential quantifier to represent
the possible passage of time. The passage of time is done
by replacing all the appearances of the clocks x ∈ X in the
formula ψ and state invariant I(q) with x+ δ. Note that the
new variable δ will not appear in the formula produced by
pre, because the algorithm applies quantifier elimination in
each step to remove the existential quantifier.

Notation 1: We denote the edges from state q as Θ(q) =
{(q1, `, q2, λ, µ) | (q1, `, q2, λ, µ) ∈ Θ ∧ q = q1}.

Algorithm 1 Obtaining Γ of PTA from Definition 6.
1: procedure Γ(H)
2: [q0, . . . , qn, qf] = TOPOLOGICAL SORT(H,Qf)
3: ψqf = True3

4: for q ∈ [qn, . . . , q0] do
5: ψq =

∨
ε∈Θ(q) preε(ψq′)

return ψq0
[∀x ∈ X(x := 0)]3

Definition 7 (Precondition Operator): Given an edge ε =
(q1, `, q2, λ, µ) ∈ Θ and the linear formula ψ corresponding
to the propagated conditions of the state q2, the precondition
operator preε is defined as follows:

preε(ψ) = (⇒ (q1,B(ε,⇒ (q2, ψ))))
B(ε, ψ) = (µ ∧ ψ[∀x ∈ λ · x := 0])

⇒ (q, ψ) =

 ψ ∧ I(q) if q is transient
∃δ ≥ 0 / otherwise
(ψ ∧ I(q))[∀x ∈ X(x := x+ δ)]

For the PTAs in Definition 6, Γ of the built PTA is a time
constraint of the end-to-end makespan parameter as well as
the parameters of the activities and environment states. Γ
is the relation among parameters that defines the end-to-
end makespan as a linear expression of time durations by
using the parameters. For instance, for the PTAs in Figure 5,
Γ(PTA(E‖σC1)) = ((pA2 ≥ pA1 ∧ pf1 = pA2 + pq1

+
pq4

) ∨ (pA1
≥ pA2

∧ pf1
= pA1

+ pq1
+ pq4

)) whereas
Γ(PTA(E‖σC2)) = (pf2

= pA1
+ pA2

+ pq1
+ pq4

) are
simplified versions of the symbolic expression that represent
their makespan. The expression Γ(PTA(E‖σC1)) states
that, when the duration of activity α1 is greater than that
of α2, the makespan (pf1

) is the sum of durations of activity
α1 plus the time spent in the states q1 and q4; otherwise, the
makespan is the duration of activity α2 plus the time spent
in the states q1 and q4. In contrast, Γ(PTA(E‖σC1)) is the
sum of the duration of the two activities plus the time spent
in the states. Thus, no matter which values are assigned to the
parameters, pf1

cannot be greater than pf2
. Even though here

it is easy to see, checking the existence of these parameters
will require the use of an SMT-solver.

D. Comparing Symbolic Expressions

Here we proceed to discuss how to compare controllers by
using Γ. Controller C1 has a behaviour of higher makespan
than C2 (noted C2^C1), if there exists a parameter valuation

3These PTAs have only one initial and one final state.

and a scheduler such that the makespan of C1 is strictly
higher than that of C2. That is to say, C1 has a behaviour
of higher makespan than C2 iff ∃σ ∃(r1..rn, rf1, rf2) ∈
Rn+2
≥0 ((r1..rn, rf1) Γ(PTA(E‖σC1)) ∧ (r1..rn, rf2)

Γ(PTA(E‖σC2)) ∧ rf1 > rf2). It means that there exists
at least one case, in which for the same scheduler σ and
assignment (r1, . . . , rn) to the parameters (p1 . . . pn), C1

performs worse than C2 (rf1 > rf2). These parameters
stand for activity durations and environment states that are
common to the two controllers. The values rf1 and rf2 are
assigned to the end-to-end makespan parameters pf1 and pf2

of the controllers C1 and C2 respectively. These two values
are conditioned by the values (r1, . . . , rn). C2^C1 can be
resolved by using SMT-solvers [Barrett and Tinelli, 2018].

Besides, in order to compare two controllers, we perform
the ^ comparison in both ways, C1^C2 and C2^C1.
Table I shows the possible results. Two controllers are: i)
Incomparable when there are circumstances in which both
controllers have a behaviour of higher makespan than the
other, ii) Equivalent when there is no scheduler that allows
one controller to have a behaviour of higher makespan than
the other, or iii) one dominates the other when one controller
does not show a behaviour of higher makespan than the
other, while the other shows a behaviour of higher makespan.
Note that this comparison takes into account all possible
schedulers of an environment.

C2^C1 C1^C2 Conclusion
Sat Sat Incomparable
Unsat Unsat Equivalent
Sat Unsat C2 dominates C1

Unsat Sat C1 dominates C2
TABLE I

POSSIBLE RESULTS OF COMPARING TWO CONTROLLERS

VI. MAKESPAN-MINIMISING CONTROLLERS

In this work, we define a makespan-minimising controller
based on the dominance relationship defined in Section V-
B. A controller C is makespan-minimising if it is a non-
dominated controller (Definition 8), i.e., there is no other
controller C ′ that dominates C.

Definition 8 (Non-dominated): Given a control problem
E = 〈E,AD, G,Σc〉 and the set of solutions C for E , we say
that C ∈ C is non-dominated iff 6 ∃C ′ ∈ C (C ′ dominates C).

Note that when a control problem is realisable, there is
at least one non-dominated controller. W.l.o.g., we restrict to
the subset of memoryless solutions [Thomas, 1995], because
solutions that have additional memory would also have
additional makespan. Since this set is finite, it is not possible
for all of them to be dominated by another controller. This
is because C dominates C ′ is a transitive and asymmetric
relation. Also note that there can be more than one non-
dominated controller.

There are algorithms for controller synthesis problems
that produce memoryless controllers [Thomas, 1995]. Such
algorithms [Maler et al., 1995] have linear complexity in the
size of the problem, and they build controllers in the form of
directed acyclic graphs (DAG), which are subgraphs of the
given problem. These controllers are universal in the sense

that any other memoryless controller is a subgraph of the
universal controller.

Algorithm 2 Non-dominated controller algorithm.
1: procedure NON DOMINATED(E,AD, G,Σc)
2: U = UNIVERSAL SYNTHESIS(E, Σc, G)
3: K = E‖U
4: [q0, . . . , qn] = TOPOLOGICAL SORT(K,QG)
5: for q ∈ [qn, . . . , q0] do
6: A = {{c} | c ∈ ∆c

K(q)}
7: if ∆u

K(q) 6= ∅ then A= A∪{∅}
8: if |Alt|> 1 then
9: D = ∅

10: for A ∈ Alt ∧A′ ∈ Alt \ {A} do
11: if K〈q,A′〉 dominates K〈q,A〉 then D = D ∪A

12: ∆K = ∆K \ {(q, c, q′) | (q, c, q′) ∈ ∆K ∧ c ∈ D}
return K

Algorithm 2 is an algorithm that produces a non-
dominated controller. This algorithm first obtains a universal
controller. Then, it traverses the states of the universal
controller in the inverse topological order. In the states
that have more than one controllable action enabled, the
algorithm uses the dominance comparison to disable some of
the enabled controllable actions. The dominance comparison
initially only compares two controllers from the initial
state. However, by defining a sub-LTS (Definition 9), the
comparison can be made from any states, not limiting to the
initial state. It then generates the set of alternatives Alt of a
state. An alternative can be one of the controllable actions
c ∈ ∆c(q) or ∅ that represents waiting for uncontrollable
events to happen. It compares alternative A ∈ Alt against
all the other alternatives A′1 . . . A

′
n ∈ Alt, by comparing

sub-LTS M〈q,A〉 against sub-LTSs M〈q,A′
1〉 . . .M〈q,A′

n〉.
If any of the other alternatives in M〈q,A′

1〉 . . .M〈q,A′
n〉

dominates M〈q,A〉, it removes the controllable transition of
alternative A from ∆K .

Definition 9 (sub-LTS): Given an LTS M =
(Q,Σ,∆, q

0
), a state q ∈ Q and A ⊆ ∆c(q), we

define M〈q,A〉 = (Q,Σ,∆′, q) as a sub-LTS of M ,
whose initial state is q, and the transition function as
∆′ = ∆ \ {(q, `′, q′) | (q, `′, q′) ∈ ∆c(q) ∧ `′ 6∈ A}.

0

1

3

type1

type2

4

8

2
sA3

6

11
checkQA

12

failQA

13
sfix

14 16

done
17

done

5

7

U

9

10

15
okQAeA3

eA2

efixsA2

sA1

eA1 eA2

eA1

eA2
sA1

eA1

sA2

sA1

Fig. 6. Universal controller for the example of Section IV. The red
transition is the transition removed by the Algorithm 2.

Figure 6 shows the universal controller of the example
presented in Section IV. Note that K = E‖U is struc-
turally equivalent to U . In this example, the algorithm
traverses the states in the order specified in the states of

the figure. Here, the states with more than one alternative
are only two. One is the state 4 which has alternatives ∅
and {sA1}. Since the alternative of waiting for eA2 does
not dominate the one that enables the action sA1

(i.e.
K〈q3,{sA1

}〉 dominates K〈q3,∅〉), the algorithm does not
remove any controllable transition here. The other one is
the state 3. Here, the alternative {sA1

} is dominated by
the alternative {sA2} (K〈q4,{sA2

}〉 dominates K〈q4,{sA1
}〉).

Then, the algorithm removes the transition (q3, sA1 , q5)
from the universal controller. Finally, the resulting controller
would be equivalent to C1 of Figure 4, if we consider only
the states that are reachable from the initial state.

The following theorem shows that the Algorithm 2 pro-
duces a controller K that is non-dominated.

Theorem 1 (K is non-dominated): Given an activity
control problem E = 〈E,AD, G,Σc〉, a K =
NON DOMINATED(E,AD, G,Σc), and the set of solutions
C for E , K is a controller and 6 ∃C ∈ C (C dominates K).

Proof Sketch: i) The algorithm produces a controller.
This comes from the fact that it is not possible to have
a circular relationship of dominance. Thus, the algorithm
can never remove all the transitions of a state. ii) The
non-dominance can be proved by induction on the topo-
logical order. The inductive step requires reasoning on
properties which relate valuations satisfying Γ in the sub-
LTS of a state to valuations satisfying Γ of successor sub-
LTSs. Universality of U is also required to prove that all
memoryless controllers are considered. Also note that all
non-dominated memoryless controllers are included in the
result yielded by the algorithm.

VII. RELATED WORK

Quantitative planning and control to minimise or maximise
payoff functions (that can include makespan) have been stud-
ied extensively, mostly based on Markov Decision Processes
and similar formalisms [Thrun et al., 2005, Bloem et al.,
2009, Chatterjee et al., 2005]. Two different controllers can
exhibit very different behaviours, depending on how the envi-
ronment interacts with them. The problem of comparing two
controllers (or contingent plans) can be solved by minimising
the expected value of the payoff function, whereas computing
an expected value requires a probability distribution for
different alternative paths. Optimal control for quantitative
discrete-event systems has also been studied in the supervi-
sory control community [Brave and Heymann, 1993, Passino
and Antsaklis, 1989]. In those works, the performance of
the controller is measured by introducing cost functions, and
the goal is to reach a set of desired states while optimising
the cost. Some works focus on synthesising an optimal
supervisor that minimises the makespan [Su et al., 2012].
Typically, to compare solutions, quantitative techniques must
aggregate makespan of different runs by using worst or
average case. In contrast, our approach does not require
probabilistic modelling or quantitative information about
the environment. Instead, we establish a way to compare
controllers qualitatively by using a symbolic comparison that

fixes the uncontrolled behaviour of the environment. This
form of comparison, we believe, is a contribution.

Time is typically considered as a quality measure of a
solution that involves concurrency. In fact, the main goal
of temporal planning problems is to try to minimise the
makespan in reaching a deadline [Cushing et al., 2007] while
satisfying a set of quantitative temporal constraints about the
order in which activities have to be executed. Recently, there
has been strong interest in the uncertainty of durations in this
community, i.e., achieving the goal for any possible value of
uncontrollable durations [Cimatti et al., 2015]. In the work
of Cimatti et al., the uncertain durations of the activities are
bounded between concrete values [δmin, δmax]. They also
use SMT to model time constraints and solve a temporal
plan, but the problems involved have no contingencies. In
contrast, we solve a reactive problem against an adversarial
environment, and the symbolic durations are used to express
preferences among solutions.

Parametric timed models have been studied since the
seminal work of [Alur et al., 1993]. Parameters are the
basis to study robust schedulability conditions [Cimatti et al.,
2008, Saksena, 1994]. The effect of parameters is studied
in generalisations of shortest and critical paths [Karp and
Orlin, 1981]. In our work, parametric systems are the basis
of comparing different controllers.

VIII. CONCLUSIONS

The main contribution of this work is building a frame-
work to symbolically compare makespan of controllers for
safety and reachability goals. In the comparison, controllers
are compared under the same contingencies. Moreover, we
define a makespan-minimising controller as a controller
that cannot be dominated by any other controller. We also
present a sound algorithm to produce a makespan-minimising
controller.

Furthermore, even though we currently make no assump-
tion on possible relations among activity durations, this
technique can be easily extended to support symbolic con-
straints of activity durations (e.g., pα1

≤ pα2
+ pα3

). These
constraints can be added into the comparison framework,
which would also be reflected in the algorithm. Although
in this paper we focus on reachability goals and makespan
analysis, we plan to extend the work to support more general
goals, such as GR(1) [Piterman et al., 2006]. However, this
has a key challenge which is to deal with cycles, which are
product of uncontrollable behaviour that can be executed an
unbounded number of times.

REFERENCES

[Alur et al., 1993] Alur, R., Henzinger, T. A., and Vardi, M. Y. (1993).
Parametric real-time reasoning. In Proc. of the ACM Symp. on Theory
of Computing, STOC ’93.

[Baier and Katoen, 2008] Baier, C. and Katoen, J.-P. (2008). Principles of
model checking. MIT press.

[Barrett and Tinelli, 2018] Barrett, C. and Tinelli, C. (2018). Satisfiability
modulo theories. In Handbook of Model Checking, pages 305–343.
Springer.

[Bellman, 1957] Bellman, R. (1957). A Markovian decision process.
Journal of Mathematics and Mechanics., 6:679–684.

[Bloem et al., 2009] Bloem, R., Chatterjee, K., Henzinger, T. A., and
Jobstmann, B. (2009). Better quality in synthesis through quantitative
objectives. In Computer Aided Verification, pages 140–156. Springer.

[Brave and Heymann, 1993] Brave, Y. and Heymann, M. (1993). On
optimal attraction in discrete-event processes. Information sciences,
67(3):245–276.

[Chatterjee et al., 2005] Chatterjee, K., Henzinger, T. A., and Jurdzinski,
M. (2005). Mean-payoff parity games. In LICS, pages 178–187. IEEE
Computer Society.

[Cimatti et al., 2008] Cimatti, A., , Palopoli, L., and Ramadian, Y. (2008).
Symbolic computation of schedulability regions using parametric timed
automata. In Real-Time Systems Symposium, RTSS’08, pages 80–89.
IEEE Press.

[Cimatti et al., 2015] Cimatti, A., Micheli, A., and Roveri, M. (2015).
Strong temporal planning with uncontrollable durations: A state-space
approach. In Proceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence, January 25-30, 2015, Austin, Texas, USA., pages
3254–3260.

[Cimatti et al., 2003] Cimatti, A., Pistore, M., Roveri, M., and Traverso, P.
(2003). Weak, strong, and strong cyclic planning via symbolic model
checking. Artificial Intelligence, 147(1-2):35–84.

[Cushing et al., 2007] Cushing, W., Kambhampati, S., Mausam, and Weld,
D. S. (2007). When is temporal planning really temporal? In IJCAI 2007,
Proceedings of the 20th International Joint Conference on Artificial
Intelligence, Hyderabad, India, January 6-12, 2007, pages 1852–1859.

[de Alfaro and Henzinger, 2001] de Alfaro, L. and Henzinger, T. A.
(2001). Interface automata. In ESEC / SIGSOFT FSE, pages 109–120.
ACM.

[Giannakopoulou and Magee, 2003] Giannakopoulou, D. and Magee, J.
(2003). Fluent Model Checking for Event-Based Systems. In ESEC/FSE,
pages 257–266, Helsinki, Finland.

[Goldman and Boddy, 1996] Goldman, R. P. and Boddy, M. S. (1996).
Expressive planning and explicit knowledge. In Proceedings of the Third
International Conference on Artificial Intelligence Planning Systems,
Edinburgh, Scotland, May 29-31, 1996, pages 110–117.

[Henzinger, 2000] Henzinger, T. A. (2000). The theory of hybrid automata.
Springer.

[Karp and Orlin, 1981] Karp, R. M. and Orlin, J. B. (1981). Parametric
shortest path algorithms with an application to cyclic staffing. Discrete
Applied Mathematics, 3(1):37–45.

[Letier and Heaven, 2013] Letier, E. and Heaven, W. (2013). Requirements
modelling by synthesis of deontic input-output automata. In Proceedings
of the 2013 International Conference on Software Engineering, pages
592–601. IEEE Press.

[Maler et al., 1995] Maler, O., Pnueli, A., and Sifakis, J. (1995). On the
synthesis of discrete controllers for timed systems (an extended abstract).
In STACS, pages 229–242.

[Passino and Antsaklis, 1989] Passino, K. and Antsaklis, P. (1989). On the
optimal control of discrete event systems. In Proceedings of the 28th
IEEE Conference on Decision and Control,, pages 2713–2718. IEEE.

[Piterman et al., 2006] Piterman, N., Pnueli, A., and Saar, Y. (2006).
Synthesis of reactive (1) designs. In International Workshop on
Verification, Model Checking, and Abstract Interpretation, pages 364–
380. Springer.

[Pnueli and Rosner, 1989] Pnueli, A. and Rosner, R. (1989). On the
synthesis of a reactive module. In Proceedings of the 16th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 179–190. ACM.

[Pryor and Collins, 1996] Pryor, L. and Collins, G. (1996). Planning for
contingencies: A decision-based approach. J. Artif. Intell. Res. (JAIR),
4:287–339.

[Ramadge and Wonham, 1984] Ramadge, P. and Wonham, W. (1984).
Supervisory control of a class of discrete event processes. In Analysis
and Optimization of Systems, pages 475–498. Springer.

[Saksena, 1994] Saksena, M. C. (1994). Parametric Scheduling for Hard
Real-time Systems. PhD thesis, College Park, MD, USA. UMI Order
No. GAX95-14577.

[Su et al., 2012] Su, R., Van Schuppen, J. H., and Rooda, J. E. (2012). The
synthesis of time optimal supervisors by using heaps-of-pieces. IEEE
Transactions on Automatic Control, 57(1):105–118.

[Thomas, 1995] Thomas, W. (1995). On the synthesis of strategies in
infinite games. In STACS, pages 1–13.

[Thrun et al., 2005] Thrun, S., Burgard, W., and Fox, D. (2005).
Probabilistic Robotics (Intelligent Robotics and Autonomous Agents).
The MIT Press.

APPENDIX

Lemma 1.1 (Stuttering: redundancy of the step operator in the precondition operator): Given a two pair of edges of a
PTA like the ones shown in Figure 8, preε1(preε2(Ψ)) =⇒ (q1,B(ε1, preε2(Ψ))).

Proof Sketch: The intuition is that the internal transition step of the state q2 was already applied when applying the
precondition operator for the first time preε2(Ψ)). This can be extended to many edges in the state q2 as in the Figure 7
preε1(preε2(Ψ)) =⇒ (q1,B(ε2,⇒ (q2,⇒ (q2,B(ε2,⇒ (q3,Ψ)))))) By using Definition 7, we can show that is redundant

to apply the ⇒ twice consecutively.

Fig. 7. Two consecutive edges of a PTA. Ψ is the partial value of the state q3 when applying the precondition operator.

NOTE: We can always use Lemma 1.1 when comparing PTAs because the last transition is to the dummy final state.

Lemma 1.2 (Precondition of controllable edges are Γ of its successor): Given a state q1 with a single outgoing edge ε =
(q1, `, q2, λ, µ) of a PTA of Definition 6 such that q2 6∈ Qf and ` ∈ Σc, Γ(H〈q1〉) = Γ(H〈q2〉) ∧ µ

′[∀x ∈ X x := 0].
Proof Sketch: Because q1 is transient, the precondition operator can be expressed as follows: preε1(Ψ) = I(q1) ∧

(µ1 ∧Ψ[∀x ∈ λ1x := 0]) (Lemma 1.1 and Definition 7).
In particular, transient states of PTAs of Definition 6 have an urgent invariant: preε1(Ψ) = (xu ≤ 0) ∧ (µ1 ∧ Ψ[∀x ∈

λ1x := 0])
Then, Γ(H〈q1〉) = preε1(Ψ)[∀x ∈ X x := 0] = ((xu ≤ 0)∧ (µ1 ∧Ψ[∀x ∈ λ1x := 0]))[∀x ∈ X x := 0] = (µ1 ∧Ψ)[∀x ∈

X x := 0] = Γ(H〈q1〉) ∧ µ1[∀x ∈ X x := 0].
In particular, when `1 ∈ Σc, Γ(H〈q1〉) = Γ(H〈q2〉) because µ1[∀x ∈ X x := 0] = (xu == 0)[∀x ∈ X x := 0] = True

Fig. 8. Two consecutive edges of a PTA. Ψ is the partial value of the state q3 when applying the precondition operator.

Lemma 1.3 (Transitivity): Given controllers C1, C2, C3 s.t. C1 dominates C2 and C2 dominates C3 or
C2 as good as C3, then C1 dominates C3.

Proof Sketch: It can be prove directly using ∀σ∀γ . . . p1 ≤ p2 ∧ p2 = p3 and ∃σ∃γ . . . p1 > p2 ∧ p2 = p3

TODO: Theorem 2 should actually first prove that there is no point in comparing against controllers with memory. That
is the reason why we focus on memoryless controllers that are subset of a universal controller.

Theorem 2 (Sub-controllers of Algorithm 2 are non-dominated): Given a controller K produced by Algorithm 2, ∀q ∈
Q 6 ∃C ∈ C s.t. C〈q〉 dominates K〈q〉, where Q are states of the universal controller and C is the set of memoryless
solutions.

Proof Sketch: We will prove it by using induction on the topological order of the states of the universal controller.

Basis case: Final States) There are no transitions available. No other sub-controllers to compare with.

Inductive Hypothesis) ∀q ∈ Q[i+1..n] 6 ∃C ∈ C s.t. C〈q〉 dominates K〈q〉

Inductive Step) We will prove the induction step using contradiction.

Lets assume that there is a controller C s.t. C〈q〉 dominates K〈q〉.
First, we divide between the transient and non-transient case.
• Non-transient: There is no controllable choice. The scheduler always enables the same transitions in the state q. To

dominate at the state q it should also dominate in its successors. But this contradicts the inductive hypothesis.
• Transient states:

The following figure is a local view to help to understand the naming conventions.

∃σ∃γ s.t. γ |= Γ(K〈q〉, σ) ∧ γ |= Γ(C〈q〉, σ) ∧ pK > pC
By using Lemma 1.2, Γ can be expressed as Γ(K〈q〉) =

∨
ε′=(q,`,q′,λ′,µ′)∈ΘK(q)(Γ(K〈q′〉) ∧ µ′[∀x ∈ X x := 0])

Then, ∃σ∃γ s.t.
γ |= (

∨
ε′∈ΘK(q)(Γ(K〈q′〉, σ) ∧ µ′[∀x ∈ X x := 0]) ∧γ |= (

∨
ε′′∈ΘC(q)(Γ(C〈q′′〉, σ) ∧ µ′′[∀x ∈ X x := 0]) ∧pK > pC .

Also, ∀σ∀γ s.t.
γ |= (

∨
ε′∈ΘK(q)(Γ(K〈q′〉, σ) ∧ µ′[∀x ∈ X x := 0]) ∧γ |= (

∨
ε′′∈ΘC(q)(Γ(C〈q′′〉, σ) ∧ µ′′[∀x ∈ X x := 0]) ∧pK ≥ pC .

Lets consider σ be a scheduler that shows that pK > pC .
– If σ(q,∆K(q)) = σ(q,∆C(q) = Z,
∃σ∃γ s.t. γ |= (

∨
ε′∈Z(Γ(K〈q′〉, σ)∧µ′[∀x ∈ X x := 0]) ∧γ |= (

∨
ε′∈Z(Γ(C〈q′〉, σ)∧µ′[∀x ∈ X x := 0]) ∧pK > pC .

Then, ∃σ∃γ s.t. γ |= (
∨
ε′∈Z(Γ(K〈q′〉, σ) ∧ Γ(C〈q′〉, σ) ∧ µ′[∀x ∈ X x := 0]) ∧pK > pC .

Analogously, ∀σ∀γ s.t. γ |= (
∨
ε′∈Z(Γ(K〈q′〉, σ) ∧ Γ(C〈q′〉, σ) ∧ µ′[∀x ∈ X x := 0]) ∧pK ≥ pC .

This implies that C〈q′〉 dominates K〈q′〉, which contradicts the inductive hypothesis.
– If σ(q,∆K(q)) 6= σ(q,∆C(q)) =⇒ σ(q,∆K(q)) = c ∧ σ(q,∆C(q)) = c′

By using Lemma 1.2, Γ can be expressed as Γ(K〈q〉) = Γ(K〈q′〉) and Γ(C〈q〉) = Γ(C〈q′′〉)
∗ Lets consider the case c′ 6∈ ∆K , which implies that the algorithm removed the transition.

Then, there must be a K〈q′′′〉 s.t. K〈q′′′〉 dominates K〈q′′〉 because the transition (q, c′, q′′) was removed.
Also, from the definition of scheduler, C〈q〉 dominates K〈q〉 implies that C〈q′′〉 was compared against all
the controllable alternatives in K〈q〉, in other words, C〈q′′〉 vs K〈q′〉,K〈q′′′〉 . . .K〈qn〉. Moreover, C〈q′′〉 must
dominate or be equally good against all of them. Then, C〈q′′〉 dominates K〈q′′′〉 or K〈q′′′〉 as good as C〈q′′〉.
By using transitivity (Lemma 1.3) and K〈q′′′〉 dominates K〈q′′〉, we can show that C〈q′′〉 dominates K〈q′′〉,
which contradicts the inductive hypothesis.

∗ Lets consider the case c′ ∈ ∆K .
Similarly, from the definition of scheduler, C〈q〉 dominates K〈q〉 implies that C〈q′′〉 was compared against
all the controllable alternatives in K〈q〉. In particular, C〈q′′〉 dominates K〈q′′〉 or K〈q′′〉 as good as C〈q′′〉
has to hold. C〈q′′〉 dominates K〈q′′〉 contradicts the inductive hypothesis. K〈q′′〉 as good as C〈q′′〉 and
C〈q′′〉 dominates K〈q′〉 implies that K〈q′′〉 dominates K〈q′〉 (Lemma 1.3) but the transition (q, c, q′) was not
removed by the algorithm. This is also a contradiction.

	Introduction
	Background
	Control Problems with Activities
	Industrial Automation Example
	Symbolic Comparison of Controllers
	Comparing under the Same Contingencies
	Timed Semantics of LTS
	Consistent Parameters as a Makespan Metric
	Comparing Symbolic Expressions

	Makespan-minimising controllers
	Related Work
	Conclusions
	References
	Appendix

