481 research outputs found

    Few-body physics in resonantly interacting ultracold quantum gases

    Full text link
    We provide a general discussion on the importance of three-body Efimov physics for strongly interacting ultracold quantum gases. Using the adiabatic hyperspherical representation, we discuss a universal classification of three-body systems in terms of the attractive or repulsive character of the effective interactions. The hyperspherical representation leads to a simple and conceptually clear picture for the bound and scattering properties of three-body systems with strong ss-wave interactions. Using our universal classification scheme, we present a detailed discussion of all relevant ultracold three-body scattering processes using a pathway analysis that makes evident the importance of Efimov physics in determining the energy and scattering length dependence of such processes. This article provides a general overview of the current status of the field and a discussion of various issues relevant to the lifetime and stability of ultracold quantum gases along with universal properties of ultracold, resonantly interacting, few-body systems.Comment: 53 pages, 23 figure

    Dynamics of three-body correlations in quenched unitary Bose gases

    Get PDF
    We investigate dynamical three-body correlations in the Bose gas during the earliest stages of evolution after a quench to the unitary regime. The development of few-body correlations is theoretically observed by determining the two- and three-body contacts. We find that the growth of three-body correlations is gradual compared to two-body correlations. The three-body contact oscillates coherently, and we identify this as a signature of Efimov trimers. We show that the growth of three-body correlations depends non-trivially on parameters derived from both the density and Efimov physics. These results demonstrate the violation of scaling invariance of unitary bosonic systems via the appearance of log-periodic modulation of three-body correlations

    Generalized Efimov effect in one dimension

    Full text link
    We study a one-dimensional quantum problem of two particles interacting with a third one via a scale-invariant subcritically attractive inverse square potential, which can be realized, for example, in a mixture of dipoles and charges confined to one dimension. We find that above a critical mass ratio, this version of the Calogero problem exhibits the generalized Efimov effect, the emergence of discrete scale invariance manifested by a geometric series of three-body bound states with an accumulation point at zero energy.Comment: 5+3 pages, 3 figures, published versio

    Universality in Three- and Four-Body Bound States of Ultracold Atoms

    Full text link
    Under certain circumstances, three or more interacting particles may form bound states. While the general few-body problem is not analytically solvable, the so-called Efimov trimers appear for a system of three particles with resonant two-body interactions. The binding energies of these trimers are predicted to be universally connected to each other, independent of the microscopic details of the interaction. By exploiting a Feshbach resonance to widely tune the interactions between trapped ultracold lithium atoms, we find evidence for two universally connected Efimov trimers and their associated four-body bound states. A total of eleven precisely determined three- and four-body features are found in the inelastic loss spectrum. Their relative locations on either side of the resonance agree well with universal theory, while a systematic deviation from universality is found when comparing features across the resonance.Comment: 16 pages including figures and Supplementary Online Materia

    Ultracold three-body collisions near narrow Feshbach resonances

    Get PDF
    We study ultracold three-body collisions of bosons and fermions when the interatomic interaction is tuned near a narrow Feshbach resonance. We show that the width of the resonance has a substantial impact on the collisional properties of ultracold gases in the strongly interacting regime. We obtain numerical and analytical results that allow us to identify universal features related to the resonance width. For narrow resonances, we have found a suppression of all inelastic processes in boson systems leading to deeply bound states and an enhancement for fermion systems.Comment: 5 pages, 3 figure

    On the Appearance of Families of Efimov States in the Spinor Three-Body Problem

    Get PDF
    Few-body systems with access to multiple internal levels exhibit richness beyond that typically found in their single-level counterparts. One example is that of Efimov states in strongly-correlated spinor three-body systems. In [V. E. Colussi, C. H. Greene, and J. P. D'Incao, Phys. Rev. Lett. {\bf 113}, 045302 (2014)] this problem was analyzed for spinor condensates finding a complex level structure as in an early work [Bulgac and Efimov, Sov. J. Nucl. Phys. 22, 153 (1976)] in nuclear physics, and the impact of Efimov physics on the general form of the scattering observables was worked out. In this paper we discuss the appearance of novel families of Efimov states in the spinor three-body problem.Comment: Conference proceedings for the 21st International Conference on Few-Body Problems in Physic
    corecore