372 research outputs found

    Collisional Aspects of Bosonic and Fermionic Dipoles in Quasi-Two-Dimensional Confining Geometries

    Full text link
    Fundamental aspects of ultracold collisions between identical bosonic or fermionic dipoles are studied under quasi-two-dimensional (Q2D) confinement. In the strongly dipolar regime, bosonic and fermion species are found to share important collisional properties as a result of the confining geometry, which suppresses the inelastic rates irrespective of the quantum statistics obeyed. A potential negative is that the confinement causes dipole-dipole resonances to be extremely narrow, which could make it difficult to explore Q2D dipolar gases with tunable interactions. Such properties are shown to be universal, and a simple WKB model reproduces most of our numerical results. In order to shed light on the many-body behavior of dipolar gases in Q2D we have analyzed the scattering amplitude and developed an energy-analytic form of the pseudopotentials for dipoles. For specific values of the dipolar interaction, the pseudopotential coefficient can be tuned to arbitrarily large values, indicating the possibility of realizing Q2D dipolar gases with tunable interactions.Comment: 4.1 pages, 3 figure

    Suppression of molecular decay in ultracold gases without Fermi statistics

    Full text link
    We study inelastic processes for ultracold three-body systems in which only one interaction is resonant. We have found that the decay rates for weakly bound molecules due to collisions with other atoms can be suppressed not only without fermionic statistics but also when bosonic statistics applies. In addition, we show that at ultracold temperatures three-body recombination involving a single resonant pair of atoms leads mainly to formation of weakly bound molecules which, in turn, are stable against decay. These results indicate that recombination in three-component atomic gases can be used as an efficient mechanism for molecular formation, allowing the achievement of high molecular densities

    Universality in Three- and Four-Body Bound States of Ultracold Atoms

    Full text link
    Under certain circumstances, three or more interacting particles may form bound states. While the general few-body problem is not analytically solvable, the so-called Efimov trimers appear for a system of three particles with resonant two-body interactions. The binding energies of these trimers are predicted to be universally connected to each other, independent of the microscopic details of the interaction. By exploiting a Feshbach resonance to widely tune the interactions between trapped ultracold lithium atoms, we find evidence for two universally connected Efimov trimers and their associated four-body bound states. A total of eleven precisely determined three- and four-body features are found in the inelastic loss spectrum. Their relative locations on either side of the resonance agree well with universal theory, while a systematic deviation from universality is found when comparing features across the resonance.Comment: 16 pages including figures and Supplementary Online Materia
    • …
    corecore