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We investigate dynamical three-body correlations in theBose gas during the earliest stages of evolution after
a quench to the unitary regime. The development of few-body correlations is theoretically observed by
determining the two- and three-body contacts. We find that the growth of three-body correlations is gradual
compared to two-body correlations. The three-body contact oscillates coherently, and we identify this as a
signature of Efimov trimers. We show that the growth of three-body correlations depends nontrivially on
parameters derived fromboth the density andEfimovphysics.These results demonstrate theviolationof scaling
invariance of unitary bosonic systems via the appearance of log-periodicmodulation of three-bodycorrelations.
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Introduction.—In the ultracold regime of bosonic gases,
where the interaction is well characterized by the s-wave
scattering length, a, macroscopic theories of matter can be
formulated from microscopic Hamiltonians. These theories
relate few-atom physics to their manifestations in macro-
scopic observables. At the heart of this link is a set of
universal relations attributed to Tan [1–3]. The Tan relations
provide an alternative path to calculate thermodynamical
properties of an ultracold quantum gas by studying analytic
solutions of the two-body problem and extracting the
extensive two-body contact density C2, which characterizes
two-body correlations at short distances within the system.
These relations are well understood for two-component
Fermi gases even in the unitary regime njaj3 ≫ 1, wheren is
the atomic density, and they have been verified experimen-
tally [4,5]. For strongly interacting Bose gases, there is an
additional complication due to the existence of the three-
body Efimov effect. At unitarity (a → ∞) an infinity of
three-body trimers emerges, which strongly alters the
scattering observables at ultracold energies [6–9]. Here,
universal relations between few-body physics and macro-
scopic observables also involve the three-body contact
density C3 [10,11], central to the many-body theory, whose
properties are not yet theoretically known for the degenerate
Bose gas in the unitary regime.
Unlike two-component unitary Fermi gases, strongly

interacting Bose-condensed gases are plagued by an
enhanced three-body loss rate growing as n3a4, limiting
the development of correlations. By quenching the inter-
actions fromweak to unitarity, Makotyn et al. [12] observed
saturation of the single-particlemomentumdistribution—an
observable sensitive to few-body correlations—of the
quenched unitary degenerate Bose gas on a time scale
shorter than the observed atom loss rate. It has been
suggested that the observed tail of the saturated momentum
distribution oscillates log periodically, the signature of

Efimov physics, and therefore is ameasurement of a nonzero
C3 [13,14]. For the thermal unitary Bose gas, C3 has been
measured interferometrically in Fletcher et al. [15] and
approaches the theoretical saturation value from Ref. [14].
Introducing additional length scales due to Efimov

physics can break the continuous scale invariance of system
properties with the interparticle spacing n−1/3. Within the
universality hypothesis, all properties of unitary quantum
gases depend solely on the density [16]. For bosons or
fermions, the only relevant scales in the universal theory
are set by the momentum ℏkn ¼ ℏð6π2nÞ1/3, the energy
En ¼ ℏ2k2n/2m, and the time tn ¼ ℏ/En, where m is the
atomic mass. Although C2 within the nonequilibrium
regime is well studied [17–19], predicting the time evolu-
tion, scaling properties, and saturation value of C3 remains
an open problem, limiting our full understanding of the role
of Efimov physics in quenched unitary Bose gases.
In this Letter, we theoretically observe the growth of the

dynamical three-body contact density C3 immediately fol-
lowing the quench to unitarity. We have developed a simple
model that describes the early correlation dynamics of the
quenched unitary Bose gas using analytic solutions of the
three-body problem [20]. At the earliest stages of evolution,
we find that the three-body contact grows slowly compared
to the two-body contact and exhibits coherent oscillations at
the frequency ofEfimov trimers.Our results demonstrate that
the violation of the continuous scale invariance of C3 at early
times is maximized whenever the size of an Efimov trimer is
comparable to the interparticle spacing.
Relations at short distances.—We begin by establishing

short distance connections between two- and three-body
correlations of a Bose gas, two- and three-body contacts,
and solutions of the few-body problem. These connections
are made at distances larger than the van der Waals length,
rvdW, but smaller than other length scales of the problem
(a, n−1/3, etc.) This is done for a uniform gas of N particles
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in volume V with the density n ¼ N/V, which can be
generalized to trapped gases using the local-density
approximation, where n is the average density hni.
Within the zero-range model for the interatomic inter-

actions, the short distance behavior of the two- and three-
body correlation functions is determined exclusively by the
two- and three-body contacts (see Ref. [11])

gð2Þðr; tÞ ¼
jrj→0

1

16π2n2r2
C2; ð1Þ

gð3ÞðR;Ω; tÞ ¼
R→0

jΨscðR;ΩÞj2 8

n3s20
ffiffiffi
3

p C3; ð2Þ

where s0 ≈ 1.006 24 is Efimov’s universal constant for
three identical bosons [21]. Center of mass dependence
in the equations above has been suppressed due to trans-
lational invariance. The relative atomic configuration
is parametrized by Jacobi vectors r≡ r2 − r1 and
ρ≡ ð2r3 − r1 − r2Þ/

ffiffiffi
3

p
. Alternatively, it can be parame-

trized by the hyper-radius R2 ≡ ðr2 þ ρ2Þ/2 and the set of
hyperangles Ω ¼ fα; r̂; ρ̂g, containing the hyperangle
α ¼ arctanðr/ρÞ and spherical angles for each Jacobi vector.
The limit notation in Eqs. (1) and (2) indicates jrj → 0 for a
fixed r̂, and R → 0 for a fixed Ω, respectively. ΨscðR;ΩÞ is
the zero-energy three-body scattering wave function

ΨscðR;ΩÞ ¼ 1

R2
sin

�
s0 ln

R
Rt

�
ϕs0ðΩÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihϕs0 jϕs0i

p ; ð3Þ

where Rt/rvdW ∈ ½1; eπ/s0 � is the three-body parameter,
setting the phase of log-periodic oscillations, and ϕs0ðΩÞ
is the hyperangular wave function for three identical bosons
in the state of lowest total angular momentum. [For analytic
expressions of ϕs0ðΩÞ and hϕs0 jϕs0i, we refer the reader to
Refs. [22,30,31].]
After the interaction quench—amounting within our

model to a quench of the Bethe-Peierls contact boundary
condition at r ¼ 0—the contact dynamics occur exclu-
sively at short distances. Therefore, the short-time short-
range behavior of few-body wave functions can yield
quantitatively correct predictions for the contact dynamics
of a quenched many-body system [18,32]. Generally, if a
particle is measured at a location defining the origin of a
coordinate system, then ngð2Þðr; tÞ is the probability density
for measuring another particle at r [33]. In a three-body
model, that probability density is given in terms of the
three-body wave function Ψðr; ρ; tÞ. We are interested in
this probability density at short distances where C2 is
defined, suggesting the relation

ngð2Þðr; tÞ ¼
jrj→0

2

Z
d3r3;12jΨðr; ρ; tÞj2; ð4Þ

where r3;12¼ρ
ffiffiffi
3

p
/2.Additionally, the quantityn2gð3ÞðR;Ω;tÞ

is the probability density of finding two other particles at
locations defined by the three-body configuration ðR;ΩÞ.
The analogous relation between the three-body correlation
function and the three-body wave function is

n2gð3ÞðR;Ω; tÞ ¼
R→0

2jΨðR;Ω; tÞj2: ð5Þ

The factor of 2 in Eqs. (4) and (5) is due to the indis-
tinguishability of particles not fixed at the origin.
Initial conditions.—To make the links in Eqs. (4) and (5)

quantitatively correct, we employ an unambiguous cali-
bration scheme. The three-body model yields correct short-
time predictions of the contacts if and only if the initial
wave function satisfies Eqs. (4) and (5) at t ¼ 0. To model
the quench, we start from the noninteracting limit where
gð2Þðr; 0Þ ¼ gð3ÞðR;Ω; 0Þ ¼ 1. There is freedom of choice
for the initial three-body wave function satisfying these
initial conditions. Here, we choose

Ψ0ðR;ΩÞ ¼ Ae−R
2/2B2

1

�
1 −

�
R
B2

�
2
�
; ð6Þ

where the analytic expression for the normalization con-
stant A is given in Ref. [22]. Setting B1 ≈ 0.6009n−1/3 and
B2 ≈ 1.1278n−1/3 satisfies both initial conditions. With this
calibration scheme, predictions for short-time short-
distance correlation phenomenon for quenched many-
body systems should not depend on the long-range part
of the few-body wave function. This was demonstrated for
two-body correlations in one and three dimensions in
Refs. [18,32].
Three-body model at unitarity.—After the quench to

unitarity, the initial wave function [Eq. (6)] is projected
onto eigenstates at unitarity, for which we utilize solutions
for three harmonically confined bosons given in Ref. [20].
These eigenstates serve only as a convenient basis on which
to expand the problem. At unitarity within the zero-range
model, the relative three-body eigenstates can be factorized

as Ψs;jðR;ΩÞ ¼ NFðsÞ
j ðRÞϕsðΩÞ/R2 sin 2α, where N is a

normalization factor, and s is a solution of a transcendental
equation resulting from the Bethe-Peierls contact condition
taken at unitarity (see Ref. [22]). The hyper-radial wave

functions FðsÞ
j ðRÞ obey [20]

�
−
ℏ2

2m

�
d2

dR2
þ 1

R
d
dR

�
þUsðRÞ

�
FðsÞ
j ðRÞ¼EFðsÞ

j ðRÞ; ð7Þ

where UsðRÞ ¼ ℏ2s2/ð2mR2Þ þmω2
0R

2/2 is a sum of the
effective three-body potential in channel s and of the local
harmonic trap with frequency ω0 and trap length aho ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ/mω0

p
. The index j labels eigenstates within a channel,

and E is the three-body relative energy.
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To connect with the short-distance behavior of
three-body correlations, we consider the R → 0 behavior
of the hyper-radial eigenstates. For s > 0, the limiting

behavior is FðsÞ
j ðRÞ ∝ OðRsÞ, which does not contribute to

the short-range three-body correlations. The only channel
contributing to three-body correlations at short distances is
associated with the lone imaginary solution of the
transcendental equation denoted s ¼ is0, giving rise
to the attractive 1/R2 three-body potential that pro-
duces the Efimov effect. The limiting behavior of the

hyper-radial eigenstates in the Efimov channel is Fðs0Þ
j ∝

sin½s0 lnðR/RtÞ�, and the eigenenergies EðjÞ
3b are obtained

from solving

argΓ
�
1þ is0−EðjÞ

3b /ℏω0

2

�
þs0 ln

Rt

aho
¼ argΓ½1þ is0�; ð8Þ

which is evaluated mod π. In the free-space limit (ω0 → 0),
there exist an infinite number of bound Efimov trimers
whose energies and sizes are characterized by the log-
periodic geometric scaling [6–9,34]:

EðjÞ
3b ¼ Eð0Þ

3b

ðeπ/s0Þ2j and RðjÞ
3b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ s20Þ

3

r
ðeπ/s0Þj
κ�

; ð9Þ

where j ¼ 0; 1;…;∞ [35]. We choose Rt such that there is

a trimer with the energy Eð0Þ
3b ¼ ℏ2κ2�/m ≈ 0.051ℏ2/mr2vdW

in the free-space limit of Eq. (8). κ� is the universal three-
body parameter found in Ref. [36].
Postquench dynamics of C3.—Given the initial condition

in Eq. (6), the solution after quenching is ΨðR;Ω; tÞ ¼P
s;jcs;jΨs;jðR;ΩÞe−iEðjÞ

3b t/ℏ, with overlaps cs;j ¼ hΨs;jjΨ0i
(see Ref. [22].) This sum runs over all channels; however,
the Efimov channel makes the sole contribution to the
short-range behavior of three-body correlations at unitarity.
Dominant contributions come from only a few trimers
ðE3b ≤ 0Þ and trapped states ðE3b > 0Þ, with eigenenergies
comparable in magnitude to En [17]. At short range, the
relevant behavior of each eigenstate in the Efimov channel

is captured by the extensive three-body contact CðjÞ
3 , which

we have calculated analytically (see Ref. [22]). Intuitively,
the dynamical three-body contact density can be written as

a superposition of CðjÞ
3 by combining Eqs. (2) and (5) and

integrating over the hyperangles

C3 ¼
n
3

����
X

j
cs0;j × eiϕj

ffiffiffiffiffiffiffiffiffiffiffi
jCðjÞ

3 j
q

e−iE
ðjÞ
3b t/ℏe−Γjt/2ℏ

����
2

; ð10Þ

where ϕj ¼
R→0

arg½Ψs0;j/Ψsc�. Here, we account for three-

body losses by utilizing a relation from Refs. [11,14] to

estimate finite widths Γj ¼ CðjÞ
3 4ℏη/ms0 valid in the limit

where the inelasticity parameter satisfies η ≪ 1. We assume

that this relation is satisfied in the remainder of this
Letter. As a result of the finite width, the time evolution
of three-body eigenstates at unitarity is updated to

EðjÞ
3b → EðjÞ

3b − iΓj/2, which leads to a decay of the norm
and the form of Eq. (10).
Hidden in Eq. (10) is a dependence of C3 on long-range

details of the three-body model. However, the postquench
three-body contact dynamics should depend only on the
behavior of the three-body wave function at short distances.
We therefore require our results to be robust to variations
of both the trapping parameters [see Eq. (7)] and the
arbitrary functional form of Ψ0 [Eq. (6)] provided that the
initial boundary conditions are satisfied. By investigating
the sensitivity of our results to these variations (see
Ref. [22]), we find that these criteria are satisfied at the
earliest stages of evolution even for loose traps supporting
more than a few trimers. Beyond t/tn ≲ 0.5 our results
develop dependence on the long-range details of the model,
and we truncate the analysis. Additionally, at later times our
model loses physical significance as we expect genuine
many-body effects to play a role in the correlation dynam-
ics. These constraints echo the findings of Refs. [17,18].
Early-time evolution of the two- and three-body contacts

in the unitary regime is shown in Fig. 1 over a range of
densities. Our three-body contact results are specific to
85Rb, depending on rvdW, m, and η. We take η ¼ 0.06 from
the experimental measurements in Ref. [37]. Qualitatively,
the contact dynamics agree with the experimental obser-
vation in Ref. [15] that the three-body contact develops
gradually compared to the two-body contact. Interpreting
C2 as the number of pairs per ðvolumeÞ4/3 and C3 as the
number of triples per ðvolumeÞ5/3 [1–3,14], we find support

 0

0.2

0.4

 0  0.1  0.2  0.3  0.4  0.5

FIG. 1. Postquench dynamics of dimensionless, scaled two-
and three-body contacts over a range of densities. Evolution of
the two-body contact is given by the universal growth rate
n−4/3C2 ¼ 128π/ð6π2Þ2/3t/tn from Ref. [18], which quickly in-
creases beyond the plotted range. This behavior is known and is
therefore not shown.
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for the sequential buildup of clusters [38,39]. Unlike the
early-time behavior of n−4/3C2 obtained in Refs. [17,18],
the behavior of n−5/3C3 in Fig. 1 varies for different
densities. This is a strong indication of scaling violations
in the dynamics of three-body correlations at short dis-
tances discussed below.
Curiously, for densities n ¼ 1010 and 1014 cm−3, the

corresponding n−5/3C3 curves in Fig. 1 exhibit a visible
oscillation on a time scale shorter than tn. By eliminating
contributions of specific eigenstates to Eq. (10), their origin
can be isolated to the Efimov trimer with binding energy

nearest En satisfying jEðjÞ
3b j ≫ En. Specifically, the oscil-

lation is due to coherences between this trimer and states
with energy comparable to En, resulting in a beating
phenomenon [40]. As the energy of this trimer approaches
En for an increasing density, the frequency of the visible
oscillations, as well as their amplitude, increases as shown
in Fig. 2. Empirically, we observe that the frequency and
damping rate of the oscillations correspond roughly to the

frequency ωðjÞ
3b ¼ EðjÞ

3b /ℏ and the width Γj of this trimer,
respectively. The trimer oscillations are therefore under-
damped and are theoretically observable provided

jEðjÞ
3b j > Γj, obtained whenever η < s0/4 (see Ref. [22]).

Oscillation maxima occur at fixed values of the phase

jEðjÞ
3b tj/ℏ ¼ 1.33ð11Þπmod 2π. For the highest and lowest

densities in Fig. 1, oscillation is due to the j ¼ 0 and j ¼ 1
Efimov trimers, respectively. Populations of the j ¼ 1
trimer in the unitary Bose gas were recently observed
through a double exponential decay of the molecular gas in
Ref. [41]. Here, we find additional theoretical evidence for
three-body bound-state signatures as coherent beats in the
early-time correlation dynamics.
Scaling violations.—How does Efimov physics alter

the density dependence of the early-time evolution of

the three-body contact? The dynamical surface in Fig. 2
displays a “rippling” effect due to the density independence
of the trimer oscillation phase discussed previously. A pair
of pronounced “peaks” in Fig. 2 are due to the variation of
the trimer oscillation amplitude with density. We find
identical results for n−5/3C3 for densities rescaled by powers
of ðeπ/s0Þ3 when plotted as a function of t/tn. Therefore,
the surface in Fig. 2 represents only a single log period,
demonstrating that n−5/3C3 has a discrete scale invariance
as a consequence of Efimov physics.
With this in mind, we study the envelope of the log-

periodic modulation of n−5/3C3 shown in Fig. 3. To
characterize the correlation trends, we propose a functional
form for the growth of three-body correlations which is
quadratic in time to leading order

n−5/3C3 ¼ A½1þ B ×Hðn; κ�; tÞ�ðt/tnÞ2; ð11Þ

where Hðn; κ�; tÞ ¼ Hðne3jπ/s0 ; κ�; tÞ ∈ ½0; 1� is an
unknown log-periodic function reflecting the influence
of Efimov physics. The first term above, proportional to
A, captures the continuous scale invariant part of the three-
body contact, corresponding to the floor ½minðn−5/3C3Þ� of
the curves in Fig. 3. In the second term above, the quantity
B is the fractional amplitude of the log-periodic modulation
½maxðn−5/3C3Þ −minðn−5/3C3Þ�/ minðn−5/3C3Þ at a fixed
t/tn, quantifying the violation of the continuous scale
invariance. From fitting our data at early times t/tn ≪ 1,
we find A ≈ 0.55 and B ≈ 3.09. Therefore the early-time
evolution of three-body correlations is, in general, poorly
captured by fitting to a universal function with continuous
scaling invariance. In Ref. [14] the restrictive assumption
was made that the saturated value of C3 scales continuously

 0.4

 0.3

 0.2

 0.1

    0

 0.4
 0.3

 0.2
 0.1  1012

 1011

 1010

 1013  1014  1015

FIG. 2. Dynamical surface of n−5/3C3 over a range of densities.
A rippling effect due to the coherent trimer oscillations occurs as
the peaks are approached from lower densities. This behavior is
repeated for densities rescaled by powers of e3π/s0 .

 0.15

 0.3

 0.08

 0.16

 0.02

 0.04

 0.002

 0.004

 1012 1011 1010  1013  1014  1015

FIG. 3. Profiles of n−5/3C3 at a fixed t/tn. The solid lines are
guides for the eye connecting the data from Fig. 2.
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as n5/3 with numerically suppressed log-periodic effects.
Over the density range ð1.6–5.5Þ × 1012 cm−3 fit in
Ref. [14], we find that Hðn; κ�; tÞ is slowly varying with
the density, providing only a minor correction to the
continuous scaling law. Hence, fitting to a universal scaling
law is sufficient over this limited density range, failing over
a broader range as H becomes significant.
Comparing Eq. (11) to our data, we infer the behavior

of Hðn; κ�; tÞ, quantifying the violation of scale invariance
at particular densities and times. Within our model, the
maximum of this unknown function occurs for densities
satisfying

RðjÞ
3b × kn ¼ 0.74ð5Þ; ð12Þ

where j is any trimer index, as in Eq. (9). When Eq. (12) is
satisfied, the size of the trimer responsible for the coherent
oscillation is comparable to k−1n , and therefore the inter-
particle spacing. This results in a correlation enhancement.
Similarly, recent results in Refs. [42,43] for the Bose
polaron problem suggest that when the size of Efimov
trimers becomes comparable to the interparticle scaling,
signatures of Efimov physics become visible in the polaron
spectrum.
Conclusion.—We have studied the early-time dynamics

of the three-body contact density for the quenched unitary
Bose gas. The relative growth of the two- and three-body
contacts indicates that triples are generated slower than
pairs of atoms immediately after the quench. Efimov
physics arises through coherent oscillations of the three-
body contact, a bound-state signature of trimers, and
through the violation of continuous scale invariance. Our
methodology can be extended to analyze three-body con-
tact dynamics for quench scenarios away from unitarity
within the zero-range model, which is beyond the scope of
this Letter (see Ref. [22]). It is of interest to extend this
analysis to later times beyond the range of our model and to
observables depending functionally on the three-body
contact. These investigations may suggest regimes of
interest for experiments, which have covered, to date
[12,15,41,44], a fraction of the log period studied in this
Letter. Preliminary observations of the decay rate over a
wider range of densities display oscillations [45]. With an
increase of signal to noise of the measurements in Ref. [12],
it may be possible to observe the scale violations and
coherent trimer oscillations predicted in this Letter or
through time-resolved rf spectroscopy (see Ref. [46]).
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