4,099 research outputs found
Follow-up after curative resection for gastric cancer. Is it time to tailor it?
There is still no consensus on the follow-up frequency and regimen after curative resection for gastric cancer. Moreover, controversy exists regarding the utility of follow-up in improving survival, and the recommendations of experts and societies vary considerably. The main reason to establish surveillance programs is to diagnose tumor recurrence or metachronous cancers early and to thereby provide prompt treatment and prolong survival. In the setting of gastric malignancies, other reasons have been put forth: (1) the detection of adverse effects of a previous surgery, such as malnutrition or digestive sequelae; (2) the collection of data; and (3) the identification of psychological and/or social problems and provision of appropriate support to the patients. No randomized controlled trials on the role of follow-up after curative resection of gastric carcinoma have been published. Herein, the primary retrospective series and systematic reviews on this subject are analyzed and discussed. Furthermore, the guidelines from international and national scientific societies are discussed. Follow-up is recommended by the majority of institutions; however, there is no real evidence that follow-up can improve long-term survival rates. Several studies have demonstrated that it is possible to stratify patients submitted to curative gastrectomy into different classes according to the risk of recurrence. Furthermore, promising studies have identified several molecular markers that are related to the risk of relapse and to prognosis. Based on these premises, a promising strategy will be to tailor follow-up in relation to the patient and tumor characteristics, molecular marker status, and individual risk of recurrence
Youth guarantee and the Italian PES: insights from ISFOL PLUS Survey data
This paper uses data from the ISFOL PLUS Survey to focus on the specific features of the Italian labour market and of the Italian Public Employment Services (PESs) so as to analyse the difficulties that they face in responding to the challenges posed by the Youth Guarantee (YG), both in terms of reorganisation and of strengthened financial effort
A population study of type II bursts in the Rapid Burster
Type II bursts are thought to arise from instabilities in the accretion flow
onto a neutron star in an X-ray binary. Despite having been known for almost 40
years, no model can yet satisfactorily account for all their properties. To
shed light on the nature of this phenomenon and provide a reference for future
theoretical work, we study the entire sample of Rossi X-ray Timing Explorer
data of type II bursts from the Rapid Burster (MXB 1730-335). We find that type
II bursts are Eddington-limited in flux, that a larger amount of energy goes in
the bursts than in the persistent emission, that type II bursts can be as short
as 0.130 s, and that the distribution of recurrence times drops abruptly below
15-18 s. We highlight the complicated feedback between type II bursts and the
NS surface thermonuclear explosions known as type I bursts, and between type II
bursts and the persistent emission. We review a number of models for type II
bursts. While no model can reproduce all the observed burst properties and
explain the source uniqueness, models involving a gating role for the magnetic
field come closest to matching the properties of our sample. The uniqueness of
the source may be explained by a special combination of magnetic field
strength, stellar spin period and alignment between the magnetic field and the
spin axis.Comment: Accepted 2015 February 12. Received 2015 February 10; in original
form 2014 December 1
EXONEST: The Bayesian Exoplanetary Explorer
The fields of astronomy and astrophysics are currently engaged in an
unprecedented era of discovery as recent missions have revealed thousands of
exoplanets orbiting other stars. While the Kepler Space Telescope mission has
enabled most of these exoplanets to be detected by identifying transiting
events, exoplanets often exhibit additional photometric effects that can be
used to improve the characterization of exoplanets. The EXONEST Exoplanetary
Explorer is a Bayesian exoplanet inference engine based on nested sampling and
originally designed to analyze archived Kepler Space Telescope and CoRoT
(Convection Rotation et Transits plan\'etaires) exoplanet mission data. We
discuss the EXONEST software package and describe how it accommodates
plug-and-play models of exoplanet-associated photometric effects for the
purpose of exoplanet detection, characterization and scientific hypothesis
testing. The current suite of models allows for both circular and eccentric
orbits in conjunction with photometric effects, such as the primary transit and
secondary eclipse, reflected light, thermal emissions, ellipsoidal variations,
Doppler beaming and superrotation. We discuss our new efforts to expand the
capabilities of the software to include more subtle photometric effects
involving reflected and refracted light. We discuss the EXONEST inference
engine design and introduce our plans to port the current MATLAB-based EXONEST
software package over to the next generation Exoplanetary Explorer, which will
be a Python-based open source project with the capability to employ third-party
plug-and-play models of exoplanet-related photometric effects.Comment: 30 pages, 8 figures, 5 tables. Presented at the 37th International
Workshop on Bayesian Inference and Maximum Entropy Methods in Science and
Engineering (MaxEnt 2017) in Jarinu/SP Brasi
Optimisation of bitumen emulsion properties for ballast stabilisation
: Ballasted track, while providing economical and practical advantages, is associated with high costs
and material consumption due to frequent maintenance. More sustainable alternatives to conventional ballasted
trackbeds should therefore aim at extending its durability, particularly considering ongoing increases in traffic
speed and loads. In this regard, the authors have investigated a solution consisting of bitumen stabilised ballast (BSB), designed to be used for new trackbeds as well as in reinforcing existing ones. This study presents the
idea behind the technology and then focuses on a specific part of its development: the optimisation of bitumen
emulsion properties and dosage in relation to ballast field conditions. Results showed that overall bitumen stabilisation improved ballast resistance to permanent deformation by enhancing stiffness and damping properties.
Scenarios with higher dosage of bitumen emulsion, higher viscosity, quicker setting behaviour, and harder base
bitumen seem to represent the most desirable conditions to achieve enhanced in-field performanc
Role of the flat-designed surface in improving the cyclic fatigue resistance of endodontic NiTi rotary instruments
The aim of this study was to investigate the role of the flat-designed surface in improving the resistance to cyclic fatigue by comparing heat-treated F-One (Fanta Dental, Shanghai, China) nickel-titanium (NiTi) rotary instruments and similar prototypes, differing only by the absence of the flat side. The null hypothesis was that there were no differences between the two tested instruments in terms of cyclic fatigue lifespan. A total of 40 new NiTi instruments (20 F-One and 20 prototypes) were tested in the present study. The instruments were rotated with the same speed (500 rpm) and torque (2 N) using an endodontic motor (Elements Motor, Kerr, Orange, CA, USA) in the same stainless steel, artificial canal (90° angle of curvature and 5 mm radius). A Wilcoxon-Mann-Whitney test was performed to assess the differences in terms of time to fracture and the length of the fractured segment between the flat- and non-flat-sided instruments. Significance was set at p = 0.05. The differences in terms of time to fracture between non-flat and flat were statistically significant (p < 0.001). In addition, the differences in terms of fractured segment length were statistically significant (p = 0.034). The results of this study highlight the importance of flat-sided design in increasing the cyclic fatigue lifespan of NiTi rotary instruments
Wetting and contact-line effects for spherical and cylindrical droplets on graphene layers: A comparative molecular-dynamics investigation
In Molecular Dynamics (MD) simulations, interactions between water molecules
and graphitic surfaces are often modeled as a simple Lennard-Jones potential
between oxygen and carbon atoms. A possible method for tuning this parameter
consists of simulating a water nanodroplet on a flat graphitic surface,
measuring the equilibrium contact angle, extrapolating it to the limit of a
macroscopic droplet and finally matching this quantity to experimental results.
Considering recent evidence demonstrating that the contact angle of water on a
graphitic plane is much higher than what was previously reported, we estimate
the oxygen-carbon interaction for the recent SPC/Fwwater model. Results
indicate a value of about 0.2 kJ/mol, much lower than previous estimations. We
then perform simulations of cylindrical water filaments on graphitic surfaces,
in order to compare and correlate contact angles resulting from these two
different systems. Results suggest that modified Young's equation does not
describe the relation between contact angle and drop size in the case of
extremely small systems and that contributions different from the one deriving
from contact line tension should be taken into account.Comment: To be published on Physical Review E (http://pre.aps.org/
Assessment of the validity of intermolecular potential models used in molecular dynamics simulations by extended x-ray absorption fine structure spectroscopy:A case study of Sr2+ in methanol solution
Molecular dynamics simulations have been carried out for Sr2+ in methanol using different Sr2+ Lennard-Jones parameters and methanol models. X-ray absorption fine structure. (EXAFS) spectroscopy has been employed to assess the reliability of the ion-ion and ion-methanol potential functions used in the simulations. Radial distribution functions of Sr2+ in methanol have been. calculated for each simulation and compared with the EXAFS experimental data. This procedure has allowed the determinations of reliable Sr2+-methanol models which have been used in longer simulations providing an accurate description of the dynamic and structural properties of this system
- …