11 research outputs found
Compilation and validation of SAR and optical data products for a complete and global map of inland/ocean water tailored to the climate modeling community
Accurate maps of surface water extent are of paramount importance for water management, satellite data processing and climate modeling. Several maps of water bodies based on remote sensing data have been released during the last decade. Nonetheless, none has a truly (90°N/90°S) global coverage while being thoroughly validated. This paper describes a global, spatially-complete (void-free) and accurate mask of inland/ocean water for the 2000–2012 period, built in the framework of the European Space Agency (ESA) Climate Change Initiative (CCI). This map results from the synergistic combination of multiple individual SAR and optical water body and auxiliary datasets. A key aspect of this work is the original and rigorous stratified random sampling designed for the quality assessment of binary classifications where one class is marginally distributed. Input and consolidated products were assessed qualitatively and quantitatively against a reference validation database of 2110 samples spread throughout the globe. Using all samples, overall accuracy was always very high among all products, between 98% and 100%. The CCI global map of open water bodies provided the best water class representation (F-score of 89%) compared to its constitutive inputs. When focusing on the challenging areas for water bodies’ mapping, such as shorelines, lakes and river banks, all products yielded substantially lower accuracy figures with overall accuracies ranging between 74% and 89%. The inland water area of the CCI global map of open water bodies was estimated to be 3.17 million km2 ± 0.24 million km2. The dataset is freely available through the ESA CCI Land Cover viewer
La densification des tissus urbanisés en Wallonie. Opportunités pour leur qualification
0info:eu-repo/semantics/publishe
The operational 333 m biophysical products of the Copernicus Global Land Service. In J. Sobrino
International audienc
Conflation of expert and crowd reference data to validate global binary thematic maps
With the unprecedented availability of satellite data and the rise of global binary maps, the collection of shared reference data sets should be fostered to allow systematic product benchmarking and validation. Authoritative global reference data are generally collected by experts with regional knowledge through photo-interpretation. During the last decade, crowdsourcing has emerged as an attractive alternative for rapid and relatively cheap data collection, beckoning the increasingly relevant question: can these two data sources be combined to validate thematic maps? In this article, we compared expert and crowd data and assessed their relative agreement for cropland identification, a land cover class often reported as difficult to map. Results indicate that observations from experts and volunteers could be partially conflated provided that several consistency checks are performed. We propose that conflation, i.e., replacement and augmentation of expert observations by crowdsourced observations, should be carried out both at the sampling and data analytics levels. The latter allows to evaluate the reliability of crowdsourced observations and to decide whether they should be conflated or discarded. We demonstrate that the standard deviation of crowdsourced contributions is a simple yet robust indicator of reliability which can effectively inform conflation. Following this criterion, we found that 70% of the expert observations could be crowdsourced with little to no effect on accuracy estimates, allowing a strategic reallocation of the spared expert effort to increase the reliability of the remaining 30% at no additional cost. Finally, we provide a collection of evidence-based recommendations for future hybrid reference data collection campaigns