75 research outputs found

    Apolipoprotein A-I (ApoA-I) Mimetic Peptide P2a by Restoring CholesterolEsterification Unmasks ApoA-I Anti-Inflammatory Endogenous Activity In Vivo. CO-FIRST AUTHOR

    Get PDF
    The acute-phase protein haptoglobin (Hpt) binds apolipoprotein A-I (ApoA-I) and impairs its action on lecithin-cholesterol acyltransferase, an enzyme that plays a key role in reverse cholesterol transport. We have previously shown that an ApoA-I mimetic peptide, P2a, displaces Hpt from ApoA-I, restoring the enzyme activity in vitro. The aim of this study was to evaluate whether P2a displaces Hpt from ApoA-I in vivo and whether this event leads to anti-inflammatory activity. Mice received subplantar injections of carrageenan. Paw volume was measured before the injection and 2, 4, 6, 24, 48, 72, and 96 h thereafter. At the same time points, concentrations of HDL cholesterol (C) and cholesterol esters (CEs) were measured by high-performance liquid chromatography, and Hpt and ApoA-I plasma levels were evaluated by enzyme-linked immunosorbent assay. Western blotting analysis for nitric-oxide synthase and cyclooxygenase (COX) isoforms was also performed on paw homogenates. CEs significantly decreased in carrageenan-treated mice during edema development and negatively correlated with the Hpt/ApoA-I ratio. P2a administration significantly restored the CE/C ratio. In addition, P2a displayed an anti-inflammatory effect on the late phase of edema with a significant reduction in COX2 expression coupled to an inhibition of prostaglandin E2 synthesis, implying that, in the presence of P2a, CE/C ratio rescue and edema inhibition were strictly related. In conclusion, the P2a effect is due to its binding to Hpt with consequent displacement of ApoA-I that exerts anti-inflammatory activity. Therefore, it is feasible to design drugs that, by enhancing the physiological endogenous protective role of ApoA-I, may be useful in inflammation-based diseases

    The Human TPR Protein TTC4 Is a Putative Hsp90 Co-Chaperone Which Interacts with CDC6 and Shows Alterations in Transformed Cells

    Get PDF
    BACKGROUND: The human TTC4 protein is a TPR (tetratricopeptide repeat) motif-containing protein. The gene was originally identified as being localized in a genomic region linked to breast cancer and subsequent studies on melanoma cell lines revealed point mutations in the TTC4 protein that may be associated with the progression of malignant melanoma. METHODOLOGY/PRINCIPLE FINDINGS: Here we show that TTC4 is a nucleoplasmic protein which interacts with HSP90 and HSP70, and also with the replication protein CDC6. It has significant structural and functional similarities with a previously characterised Drosophila protein Dpit47. We show that TTC4 protein levels are raised in malignant melanoma cell lines compared to melanocytes. We also see increased TTC4 expression in a variety of tumour lines derived from other tissues. In addition we show that TTC4 proteins bearing some of the mutations previously identified from patient samples lose their interaction with the CDC6 protein. CONCLUSIONS/SIGNIFICANCE: Based on these results and our previous work with the Drosophila Dpit47 protein we suggest that TTC4 is an HSP90 co-chaperone protein which forms a link between HSP90 chaperone activity and DNA replication. We further suggest that the loss of the interaction with CDC6 or with additional client proteins could provide one route through which TTC4 could influence malignant development of cells

    The Crystal Structure of the Human Co-Chaperone P58IPK

    Get PDF
    P58IPK is one of the endoplasmic reticulum- (ER-) localised DnaJ (ERdj) proteins which interact with the chaperone BiP, the mammalian ER ortholog of Hsp70, and are thought to contribute to the specificity and regulation of its diverse functions. P58IPK, expression of which is upregulated in response to ER stress, has been suggested to act as a co-chaperone, binding un- or misfolded proteins and delivering them to BiP. In order to give further insights into the functions of P58IPK, and the regulation of BiP by ERdj proteins, we have determined the crystal structure of human P58IPK to 3.0 Å resolution using a combination of molecular replacement and single wavelength anomalous diffraction. The structure shows the human P58IPK monomer to have a very elongated overall shape. In addition to the conserved J domain, P58IPK contains nine N-terminal tetratricopeptide repeat motifs, divided into three subdomains of three motifs each. The J domain is attached to the C-terminal end via a flexible linker, and the structure shows the conserved Hsp70-binding histidine-proline-aspartate (HPD) motif to be situated on the very edge of the elongated protein, 100 Å from the putative binding site for unfolded protein substrates. The residues that comprise the surface surrounding the HPD motif are highly conserved in P58IPK from other organisms but more varied between the human ERdj proteins, supporting the view that their regulation of different BiP functions is facilitated by differences in BiP-binding

    Transcript analysis of the extended hyp-operon in the cyanobacteria Nostoc sp. strain PCC 7120 and Nostoc punctiforme ATCC 29133

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cyanobacteria harbor two [NiFe]-type hydrogenases consisting of a large and a small subunit, the Hup- and Hox-hydrogenase, respectively. Insertion of ligands and correct folding of nickel-iron hydrogenases require assistance of accessory maturation proteins (encoded by the <it>hyp</it>-genes). The intergenic region between the structural genes encoding the uptake hydrogenase (<it>hupSL</it>) and the accessory maturation proteins (<it>hyp </it>genes) in the cyanobacteria <it>Nostoc </it>PCC 7120 and <it>N. punctiforme </it>were analysed using molecular methods.</p> <p>Findings</p> <p>The five ORFs, located in between the uptake hydrogenase structural genes and the <it>hyp</it>-genes, can form a transcript with the <it>hyp</it>-genes. An identical genomic localization of these ORFs are found in other filamentous, N<sub>2</sub>-fixing cyanobacterial strains. In <it>N. punctiforme </it>and <it>Nostoc </it>PCC 7120 the ORFs upstream of the <it>hyp</it>-genes showed similar transcript level profiles as <it>hupS </it>(hydrogenase structural gene), <it>nifD </it>(nitrogenase structural gene), <it>hypC </it>and <it>hypF </it>(accessory hydrogenase maturation genes) after nitrogen depletion. <it>In silico </it>analyzes showed that these ORFs in <it>N. punctiform</it>e harbor the same conserved regions as their homologues in <it>Nostoc </it>PCC 7120 and that they, like their homologues in <it>Nostoc </it>PCC 7120, can be transcribed together with the <it>hyp</it>-genes forming a larger extended <it>hyp-</it>operon. DNA binding studies showed interactions of the transcriptional regulators CalA and CalB to the promoter regions of the extended <it>hyp</it>-operon in <it>N. punctiforme </it>and <it>Nostoc </it>PCC 7120.</p> <p>Conclusions</p> <p>The five ORFs upstream of the <it>hyp</it>-genes in several filamentous N<sub>2</sub>-fixing cyanobacteria have an identical genomic localization, in between the genes encoding the uptake hydrogenase and the maturation protein genes. In <it>N. punctiforme </it>and <it>Nostoc </it>PCC 7120 they are transcribed as one operon and may form transcripts together with the <it>hyp</it>-genes. The expression pattern of the five ORFs within the extended <it>hyp</it>-operon in both <it>Nostoc punctiforme </it>and <it>Nostoc </it>PCC 7120 is similar to the expression patterns of <it>hupS</it>, <it>nifD</it>, <it>hypF </it>and <it>hypC</it>. CalA, a known transcription factor, interacts with the promoter region between <it>hupSL </it>and the five ORFs in the extended <it>hyp</it>-operon in both <it>Nostoc </it>strains.</p

    The Energy Landscapes of Repeat-Containing Proteins: Topology, Cooperativity, and the Folding Funnels of One-Dimensional Architectures

    Get PDF
    Repeat-proteins are made up of near repetitions of 20– to 40–amino acid stretches. These polypeptides usually fold up into non-globular, elongated architectures that are stabilized by the interactions within each repeat and those between adjacent repeats, but that lack contacts between residues distant in sequence. The inherent symmetries both in primary sequence and three-dimensional structure are reflected in a folding landscape that may be analyzed as a quasi–one-dimensional problem. We present a general description of repeat-protein energy landscapes based on a formal Ising-like treatment of the elementary interaction energetics in and between foldons, whose collective ensemble are treated as spin variables. The overall folding properties of a complete “domain” (the stability and cooperativity of the repeating array) can be derived from this microscopic description. The one-dimensional nature of the model implies there are simple relations for the experimental observables: folding free-energy (ΔGwater) and the cooperativity of denaturation (m-value), which do not ordinarily apply for globular proteins. We show how the parameters for the “coarse-grained” description in terms of foldon spin variables can be extracted from more detailed folding simulations on perfectly funneled landscapes. To illustrate the ideas, we present a case-study of a family of tetratricopeptide (TPR) repeat proteins and quantitatively relate the results to the experimentally observed folding transitions. Based on the dramatic effect that single point mutations exert on the experimentally observed folding behavior, we speculate that natural repeat proteins are “poised” at particular ratios of inter- and intra-element interaction energetics that allow them to readily undergo structural transitions in physiologically relevant conditions, which may be intrinsically related to their biological functions

    A Screen for RNA-Binding Proteins in Yeast Indicates Dual Functions for Many Enzymes

    Get PDF
    Hundreds of RNA-binding proteins (RBPs) control diverse aspects of post-transcriptional gene regulation. To identify novel and unconventional RBPs, we probed high-density protein microarrays with fluorescently labeled RNA and selected 200 proteins that reproducibly interacted with different types of RNA from budding yeast Saccharomyces cerevisiae. Surprisingly, more than half of these proteins represent previously known enzymes, many of them acting in metabolism, providing opportunities to directly connect intermediary metabolism with posttranscriptional gene regulation. We mapped the RNA targets for 13 proteins identified in this screen and found that they were associated with distinct groups of mRNAs, some of them coding for functionally related proteins. We also found that overexpression of the enzyme Map1 negatively affects the expression of experimentally defined mRNA targets. Our results suggest that many proteins may associate with mRNAs and possibly control their fates, providing dense connections between different layers of cellular regulation

    Influence of Substrates on the Surface Characteristics and Membrane Proteome of Fibrobacter succinogenes S85

    Get PDF
    Although Fibrobacter succinogenes S85 is one of the most proficient cellulose degrading bacteria among all mesophilic organisms in the rumen of herbivores, the molecular mechanism behind cellulose degradation by this bacterium is not fully elucidated. Previous studies have indicated that cell surface proteins might play a role in adhesion to and subsequent degradation of cellulose in this bacterium. It has also been suggested that cellulose degradation machinery on the surface may be selectively expressed in response to the presence of cellulose. Based on the genome sequence, several models of cellulose degradation have been suggested. The aim of this study is to evaluate the role of the cell envelope proteins in adhesion to cellulose and to gain a better understanding of the subsequent cellulose degradation mechanism in this bacterium. Comparative analysis of the surface (exposed outer membrane) chemistry of the cells grown in glucose, acid-swollen cellulose and microcrystalline cellulose using physico-chemical characterisation techniques such as electrophoretic mobility analysis, microbial adhesion to hydrocarbons assay and Fourier transform infra-red spectroscopy, suggest that adhesion to cellulose is a consequence of an increase in protein display and a concomitant reduction in the cell surface polysaccharides in the presence of cellulose. In order to gain further understanding of the molecular mechanism of cellulose degradation in this bacterium, the cell envelope-associated proteins were enriched using affinity purification and identified by tandem mass spectrometry. In total, 185 cell envelope-associated proteins were confidently identified. Of these, 25 proteins are predicted to be involved in cellulose adhesion and degradation, and 43 proteins are involved in solute transport and energy generation. Our results supports the model that cellulose degradation in F. succinogenes occurs at the outer membrane with active transport of cellodextrins across for further metabolism of cellodextrins to glucose in the periplasmic space and inner cytoplasmic membrane

    TSPY potentiates cell proliferation and tumorigenesis by promoting cell cycle progression in HeLa and NIH3T3 cells

    Get PDF
    BACKGROUND: TSPY is a repeated gene mapped to the critical region harboring the gonadoblastoma locus on the Y chromosome (GBY), the only oncogenic locus on this male-specific chromosome. Elevated levels of TSPY have been observed in gonadoblastoma specimens and a variety of other tumor tissues, including testicular germ cell tumors, prostate cancer, melanoma, and liver cancer. TSPY contains a SET/NAP domain that is present in a family of cyclin B and/or histone binding proteins represented by the oncoprotein SET and the nucleosome assembly protein 1 (NAP1), involved in cell cycle regulation and replication. METHODS: To determine a possible cellular function for TSPY, we manipulated the TSPY expression in HeLa and NIH3T3 cells using the Tet-off system. Cell proliferation, colony formation assays and tumor growth in nude mice were utilized to determine the TSPY effects on cell growth and tumorigenesis. Cell cycle analysis and cell synchronization techniques were used to determine cell cycle profiles. Microarray and RT-PCR were used to investigate gene expression in TSPY expressing cells. RESULTS: Our findings suggest that TSPY expression increases cell proliferation in vitro and tumorigenesis in vivo. Ectopic expression of TSPY results in a smaller population of the host cells in the G(2)/M phase of the cell cycle. Using cell synchronization techniques, we show that TSPY is capable of mediating a rapid transition of the cells through the G(2)/M phase. Microarray analysis demonstrates that numerous genes involved in the cell cycle and apoptosis are affected by TSPY expression in the HeLa cells. CONCLUSION: These data, taken together, have provided important insights on the probable functions of TSPY in cell cycle progression, cell proliferation, and tumorigenesis

    Analysis of Pools of Targeted Salmonella Deletion Mutants Identifies Novel Genes Affecting Fitness during Competitive Infection in Mice

    Get PDF
    Pools of mutants of minimal complexity but maximal coverage of genes of interest facilitate screening for genes under selection in a particular environment. We constructed individual deletion mutants in 1,023 Salmonella enterica serovar Typhimurium genes, including almost all genes found in Salmonella but not in related genera. All mutations were confirmed simultaneously using a novel amplification strategy to produce labeled RNA from a T7 RNA polymerase promoter, introduced during the construction of each mutant, followed by hybridization of this labeled RNA to a Typhimurium genome tiling array. To demonstrate the ability to identify fitness phenotypes using our pool of mutants, the pool was subjected to selection by intraperitoneal injection into BALB/c mice and subsequent recovery from spleens. Changes in the representation of each mutant were monitored using T7 transcripts hybridized to a novel inexpensive minimal microarray. Among the top 120 statistically significant spleen colonization phenotypes, more than 40 were mutations in genes with no previously known role in this model. Fifteen phenotypes were tested using individual mutants in competitive assays of intraperitoneal infection in mice and eleven were confirmed, including the first two examples of attenuation for sRNA mutants in Salmonella. We refer to the method as Array-based analysis of cistrons under selection (ABACUS)
    corecore