152 research outputs found

    Efficient Maximum-Likelihood Based Clock and Phase Estimators for OQPSK Signals

    Get PDF
    In this paper we propose an algorithm for joint carrier phase and timing estimation with OQPSK modulations. The derivation is based on the maximum-likelihood criterion, and exploits a very efficient algorithm for the detection of differentially encoded MM-PSK symbols already described in literature. Though we are mainly interested in measuring the phase and clock parameters, estimates of the transmitted symbols are also obtained as by-products. The resulting scheme has a feedforward structure and provides phase and timing information in a fixed time, differently from closed-loop architectures. It can be implemented in digital form and is particularly suitable for burst mode transmissions. Its performance is investigated by simulation and the results are compared with Cramér-Rao bounds. It turns out that the estimation accuracy is very close to the theoretical limits, even with short observation intervals and small values of the excess bandwidth. In such conditions, the proposed estimators largely outperform other schemes already known in literature. Their superiority becomes less significant as the signal bandwidth increases

    Code-Multiplexing-Based One-Way Detect-and-Forward Relaying Schemes for Multiuser UWB MIMO Systems

    Get PDF
    In this paper, we consider decode-and-forward (DF) one-way relaying schemes for multiuser impulse-radio ultrawideband (UWB) communications. We assume low-complexity terminals with limited processing capabilities and a central transceiver unit (i.e., the relay) with a higher computational capacity. All nodes have a single antenna differently from the relay in which multiple antennas may be installed. In order to keep the complexity as low as possible, we concentrate on noncoherent transceiver architectures based on multiuser code-multiplexing transmitted-reference schemes. We propose various relaying systems with different computational complexity and different levels of required channel knowledge. The proposed schemes largely outperform systems without relay in terms of both bit error rate (BER) performance and coverage

    Holographic MIMO Communications: What is the benefit of closely spaced antennas?

    Full text link
    Holographic MIMO refers to an array (possibly large) with a massive number of antennas that are individually controlled and densely deployed. The aim of this paper is to provide further insights into the advantages (if any) of having closely spaced antennas in the uplink and downlink of a multi-user Holographic MIMO system. To this end, we make use of the multiport communication theory, which ensures physically consistent uplink and downlink models. We first consider a simple uplink scenario with two side-by-side half-wavelength dipoles, two users and single path line-of-sight propagation, and show both analytically and numerically that the channel gain and average spectral efficiency depend strongly on the directions from which the signals are received and on the array matching network used. Numerical results are then used to extend the analysis to more practical scenarios with a larger number of dipoles and users. The case in which the antennas are densely packed in a space-constrained factor form is also considered. It turns out that the spectral efficiency increases as the antenna distance reduces thanks to the larger number of antennas that allow to collect more energy, not because of the mutual coupling.Comment: 32 pages, 13 figures, submitted to IEEE Transactions on Wireless Communication

    DFT-Based Channel Estimation for Holographic MIMO

    Full text link
    Holographic MIMO (hMIMO) systems with a massive number of individually controlled antennas N make minimum mean square error (MMSE) channel estimation particularly challenging, due to its computational complexity that scales as N3N^3 . This paper investigates uniform linear arrays and proposes a low-complexity method based on the discrete Fourier transform (DFT) approximation, which follows from replacing the covariance matrix by a suitable circulant matrix. Numerical results show that, already for arrays with moderate size (in the order of tens of wavelengths), it achieves the same performance of the optimal MMSE, but with a significant lower computational load that scales as NlogNN \log N. Interestingly, the proposed method provides also increased robustness in case of imperfect knowledge of the covariance matrix.Comment: 5 pages,4 figures, Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, USA, Nov. 202

    Frequency Estimation in OFDM Direct-Conversion Receivers Using a Repeated Preamble

    Get PDF
    This paper investigates the problem of carrier frequency offset (CFO) recovery in an OFDM receiver affected by frequency-selective in-phase/quadrature (I/Q) imbalances. The analysis is based on maximum-likelihood (ML) methods and relies on the transmission of a training preamble with a repetitive structure in the time domain. After assessing the accuracy of the conventional ML (CML) scheme in a scenario characterized by I/Q impairments, we review the joint ML (JML) estimator of all unknown parameters and evaluate its theoretical performance. In order to improve the estimation accuracy, we also present a novel CFO recovery method that exploits some side-information about the signal-to-interference ratio. It turns out that both CML and JML can be derived from this scheme by properly adjusting the value of a design parameter. The accuracy of the investigated methods are compared with the relevant Cramer-Rao bound. Our results can be used to check whether conventional CFO recovery algorithms can work properly or not in the presence of I/Q imbalances and also to evaluate the potential gain attainable by more sophisticated schemes

    On the Feasibility of Overshadow Enlargement Attack on IEEE 802.15.4a Distance Bounding

    Get PDF
    Distance-bounding protocols are able to measure a secure upper bound to the distance between two devices. They are designed to resist to reduction attacks, whose objective is reducing the measured distance. In this paper we focus on the opposite problem, the enlargement attack, which is aimed at enlarging the measured distance. We analyze the feasibility of enlargement attacks through overshadow strategies on 802.15.4a UWB distance-bounding protocols. We show that the overshadow strategies, generally considered feasible by the existing literature, are actually difficult to carry out. Depending on the delay introduced by the adversary, there are cases in which they have no effect or their effect is not controllable

    Quality of care provided by Multiple Sclerosis Centers during Covid-19 pandemic: Results of an Italian multicenter patient-centered survey

    Get PDF
    Background: Covid-19 pandemic impacted on management of people with Multiple Sclerosis (pwMS). Level of satisfaction of pwMS regarding the care received by the staff of Multiple Sclerosis Centers (MSCs) during the pandemic was not fully investigated. In a large patient-centered multicenter study, the therapeutic adherence and quality of care of MSCs was assessed. Methods: In April-May 2021, an online survey was widespread by 16 Italian MSCs. Frequencies, percentages and/or means and standard deviations were calculated to describe the sample. ANOVAs were performed to evaluate the effect of sociodemographic and clinical variables on overall pwMS' rating of MSC assistance. Results: 1670 pwMS completed the survey (67.3% women). During the pandemic, 88% did not change their disease modifying therapy schedule, and 89.1% reached their MSCs with no or little difficulties. Even if only 1.3% of participants underwent a tele-health follow-up visit with their MSC staff, the 80.1% believed that tele-health services should be improved regardless of pandemic. 92% of participants were satisfied of how their MSC took charge of their needs; ANOVAs revealed an effect of disease duration on pwMS' level of satisfaction on MSCs management during the pandemic. Conclusions: The results revealed an efficient MSCs response to Covid-19 pandemic and provided the basis for the implementing of tele-health services that would further improve the taking charge of patients, particularly those with longer disease, higher disability, and/or living far from their MSC

    Impact of safety-related dose reductions or discontinuations on sustained virologic response in HCV-infected patients: Results from the GUARD-C Cohort

    Get PDF
    BACKGROUND: Despite the introduction of direct-acting antiviral agents for chronic hepatitis C virus (HCV) infection, peginterferon alfa/ribavirin remains relevant in many resource-constrained settings. The non-randomized GUARD-C cohort investigated baseline predictors of safety-related dose reductions or discontinuations (sr-RD) and their impact on sustained virologic response (SVR) in patients receiving peginterferon alfa/ribavirin in routine practice. METHODS: A total of 3181 HCV-mono-infected treatment-naive patients were assigned to 24 or 48 weeks of peginterferon alfa/ribavirin by their physician. Patients were categorized by time-to-first sr-RD (Week 4/12). Detailed analyses of the impact of sr-RD on SVR24 (HCV RNA <50 IU/mL) were conducted in 951 Caucasian, noncirrhotic genotype (G)1 patients assigned to peginterferon alfa-2a/ribavirin for 48 weeks. The probability of SVR24 was identified by a baseline scoring system (range: 0-9 points) on which scores of 5 to 9 and <5 represent high and low probability of SVR24, respectively. RESULTS: SVR24 rates were 46.1% (754/1634), 77.1% (279/362), 68.0% (514/756), and 51.3% (203/396), respectively, in G1, 2, 3, and 4 patients. Overall, 16.9% and 21.8% patients experienced 651 sr-RD for peginterferon alfa and ribavirin, respectively. Among Caucasian noncirrhotic G1 patients: female sex, lower body mass index, pre-existing cardiovascular/pulmonary disease, and low hematological indices were prognostic factors of sr-RD; SVR24 was lower in patients with 651 vs. no sr-RD by Week 4 (37.9% vs. 54.4%; P = 0.0046) and Week 12 (41.7% vs. 55.3%; P = 0.0016); sr-RD by Week 4/12 significantly reduced SVR24 in patients with scores <5 but not 655. CONCLUSIONS: In conclusion, sr-RD to peginterferon alfa-2a/ribavirin significantly impacts on SVR24 rates in treatment-naive G1 noncirrhotic Caucasian patients. Baseline characteristics can help select patients with a high probability of SVR24 and a low probability of sr-RD with peginterferon alfa-2a/ribavirin

    Temporary dense seismic network during the 2016 Central Italy seismic emergency for microzonation studies

    Get PDF
    In August 2016, a magnitude 6.0 earthquake struck Central Italy, starting a devastating seismic sequence, aggravated by other two events of magnitude 5.9 and 6.5, respectively. After the first mainshock, four Italian institutions installed a dense temporary network of 50 seismic stations in an area of 260 km2. The network was registered in the International Federation of Digital Seismograph Networks with the code 3A and quoted with a Digital Object Identifier ( https://doi.org/10.13127/SD/ku7Xm12Yy9 ). Raw data were converted into the standard binary miniSEED format, and organized in a structured archive. Then, data quality and completeness were checked, and all the relevant information was used for creating the metadata volumes. Finally, the 99 Gb of continuous seismic data and metadata were uploaded into the INGV node of the European Integrated Data Archive repository. Their use was regulated by a Memorandum of Understanding between the institutions. After an embargo period, the data are now available for many different seismological studies.Publishedid 1825T. Sismologia, geofisica e geologia per l'ingegneria sismicaJCR Journa

    A Systematic Review and International Web-Based Survey of Randomized Controlled Trials in the Perioperative and Critical Care Setting: Interventions Reducing Mortality

    Get PDF
    The authors aimed to identify interventions documented by randomized controlled trials (RCTs) that reduce mortality in adult critically ill and perioperative patients, followed by a survey of clinicians’ opinions and routine practices to understand the clinicians’ response to such evidence. The authors performed a comprehensive literature review to identify all topics reported to reduce mortality in perioperative and critical care settings according to at least 2 RCTs or to a multicenter RCT or to a single-center RCT plus guidelines. The authors generated position statements that were voted on online by physicians worldwide for agreement, use, and willingness to include in international guidelines. From 262 RCT manuscripts reporting mortality differences in the perioperative and critically ill settings, the authors selected 27 drugs, techniques, and strategies (66 RCTs, most frequently published by the New England Journal of Medicine [13 papers], Lancet [7], and Journal of the American Medical Association [5]) with an agreement ≥67% from over 250 physicians (46 countries). Noninvasive ventilation was the intervention supported by the largest number of RCTs (n = 13). The concordance between agreement and use (a positive answer both to “do you agree” and “do you use”) showed differences between Western and other countries and between anesthesiologists and intensive care unit physicians. The authors identified 27 clinical interventions with randomized evidence of survival benefit and strong clinician support in support of their potential life-saving properties in perioperative and critically ill patients with noninvasive ventilation having the highest level of support. However, clinician views appear affected by specialty and geographical location
    corecore