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Abstract—This paper investigates the problem of carrier5
frequency offset (CFO) recovery in an OFDM receiver affected6
by frequency-selective in-phase/quadrature (I/Q) imbalances. The7
analysis is based on maximum-likelihood (ML) methods and relies8
on the transmission of a training preamble with a repetitive struc-9
ture in the time domain. After assessing the accuracy of the10
conventional ML (CML) scheme in a scenario characterized by11
I/Q impairments, we review the joint ML (JML) estimator of all12
unknown parameters and evaluate its theoretical performance.13
In order to improve the estimation accuracy, we also present a14
novel CFO recovery method that exploits some side-information15
about the signal-to-interference ratio. It turns out that both CML16
and JML can be derived from this scheme by properly adjusting17
the value of a design parameter. The accuracy of the investigated18
methods are compared with the relevant Cramer–Rao bound. Our19
results can be used to check whether conventional CFO recovery20
algorithms can work properly or not in the presence of I/Q imbal-21
ances and also to evaluate the potential gain attainable by more22
sophisticated schemes.23

Index Terms—Frequency recovery, OFDM, direct-conversion24
receiver, I/Q imbalance.25

I. INTRODUCTION26

I N RECENT years, the combination of OFDM with the27

direct-conversion receiver (DCR) concept has attracted28

considerable attention [1]. In contrast to the classical super-29

heterodyne architecture, in a DCR device the radio-frequency30

(RF) signal is down-converted to baseband without passing31

through any intermediate-frequency (IF) stage. On the one32

hand, this approach avoids the use of expensive image rejection33

filters and other off-chip components, with a remarkable advan-34

tage in terms of cost and circuit board size. On the other hand,35

a DCR front-end introduces some RF/analog imbalances aris-36

ing from the use of in-phase/quadrature (I/Q) low-pass filters37

(LPFs) with mismatched frequency responses, and from local38

oscillator (LO) signals with unequal amplitudes and imper-39

fect 90◦ phase difference. Overall, I/Q non-idealities give rise40

to conjugate mirror-image interference on the down-converted41

signal, which can seriously degrade the system performance.42

An OFDM receiver also exhibits a remarkable sensitivity to the43

carrier frequency offset (CFO) between the received waveform44
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and the LO signals, which originates interchannel interference 45

(ICI) at the output of the discrete Fourier transform (DFT) unit. 46

An intense research activity has been recently devoted to 47

the problem of CFO recovery in OFDM systems plagued by 48

frequency-selective I/Q imperfections. The methods presented 49

in [2] and [3] exploit a dedicated training preamble (TP) com- 50

posed of three repeated parts to retrieve the cosine of the 51

normalized CFO. However, since the cosine is an even func- 52

tion of its argument, the frequency estimates are affected by an 53

inherent sign ambiguity. In [4]–[6] the original preamble pro- 54

posed in [2] is extended by a second part which is rotated by 55

an artificial frequency shift before transmission. The resulting 56

TP allows one to recover both the cosine and the sine of the 57

CFO, which are eventually combined to get unambiguous esti- 58

mates of the frequency offset. A similar approach is adopted 59

in [7], where the sign ambiguity problem is fixed by rotating 60

the repeated parts of the TP by a specified phase pattern. Albeit 61

effective, all the aforementioned solutions cannot be applied to 62

practical OFDM systems since they rely on suitably designed 63

TPs that cannot be found in any commercial standard. 64

The schemes presented in [8]–[12] exploit the conven- 65

tional repeated TP of the IEEE 802.11a WLAN standard. 66

Specifically, in [8] the authors present a suitable matrix for- 67

mulation of the received signal samples to derive novel sine 68

and cosine-based CFO estimators, while the frequency-domain 69

correlations of the TP are used in [9]. An alternative cosine- 70

based estimator is derived in [10] using a general relation 71

among three arbitrary TP segments, while rotational invariance 72

techniques (ESPRIT) [13] are applied in [11]. Finally, an iter- 73

ative interference-cancellation approach is presented in [12] 74

by resorting to the space-alternating generalized expectation- 75

maximization (SAGE) algorithm [14]. 76

The common idea behind all the aforementioned schemes is 77

that conventional CFO estimators cannot work properly when 78

applied to a DCR architecture. However, so far only numeri- 79

cal measurements and heuristic arguments have been used to 80

support such an established belief, while any solid theoretical 81

analysis is still missing. This paper tries to fill such a gap by 82

providing a theoretical investigation of the CFO recovery prob- 83

lem in an OFDM receiver affected by frequency-selective I/Q 84

imbalance. In doing so, we adopt a maximum-likelihood (ML) 85

approach and consider a burst-mode transmission wherein each 86

frame is preceded by the conventional repeated TP. Our goal 87

is to provide answers to the following key questions: i) To 88

which extent can conventional CFO recovery schemes per- 89

form satisfactorily in the presence of RF imperfections? i i) 90

How do CFO recovery schemes devised for DCR architectures 91
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compare with conventional methods that ignore the presence of92

I/Q imbalances? i i i) Is it possible to design more sophisticated93

algorithms to improve the accuracy of available methods? iv)94

Can such improved performance be achieved with a tolerable95

increase of the system complexity?96

In order to address question i), we begin our study by review-97

ing the classical ML (CML) frequency estimator presented in98

[15] and analytically assessing its accuracy in the presence of99

I/Q imbalances. This analysis, which is not available in the100

literature, is important for establishing the price (in terms of101

estimation accuracy) that must be paid when applying CML in102

an I/Q imbalance scenario. Next, we assess the theoretical per-103

formance of the algorithm presented in [7] for the joint ML104

(JML) estimation of the CFO, the channel-distorted TP and its105

mirror image. Such an analysis is not available in [7] and pro-106

vides an answer to question i i). As we shall see, JML is very107

sensitive to the magnitude of the CFO value and fails when-108

ever the CFO becomes vanishingly small. Motivated by such a109

result, we move to question i i i) and derive a novel ML-based110

estimator of all the unknown parameters which exploits some111

side information about the average signal-to-image ratio (SIR).112

Such an estimator can be interpreted as an extension of both113

CML and JML since the latter schemes are obtained from the114

former by simply adjusting a design parameter. Compared to115

CML and JML, the new estimator provides improved accuracy116

at the price of a certain increase of the computational load. The117

complexity analysis of CML, JML and CJML is eventually used118

to answer question iv). A last contribution is the derivation of119

the Cramer-Rao bound (CRB) for CFO recovery in the pres-120

ence of I/Q imbalance using the true noise statistics. This result121

can be used to check whether the approximated bound derived122

under the traditional white Gaussian noise (WGN) assumption123

deviates substantially or not from the true CRB.124

The rest of the paper is organized as follows. Next section125

illustrates the DCR architecture and introduces the signal126

model. In Sects III and IV we review the CML and JML,127

respectively, while the novel CFO estimator exploiting SIR128

information is derived in Sect. V. We provide the CRB analysis129

in Sect. VI and discuss simulation results in Sect. VII. Finally,130

some conclusions are drawn in Sect. VIII.131

Notation: Matrices and vectors are denoted by boldface let-132

ters, with IN and 0 being the identity matrix of order N and133

the null vector, respectively. A = diag{a(n); n = 1, 2, . . . , N }134

denotes an N × N diagonal matrix with entries a(n) along its135

main diagonal, while B−1 is the inverse of a square matrix B.136

We use E{·}, (·)∗, (·)T and (·)H for expectation, complex conju-137

gation, transposition and Hermitian transposition, respectively.138

The notation arg{·} stands for the argument of a complex-valued139

quantity, | · | represents the corresponding modulus, while the140

real and imaginary parts are expressed by Re(·) and Im(·),141

respectively. Finally, we denote by λ̃ a trial value of an unknown142

parameter λ.143

II. SIGNAL MODEL IN THE PRESENCE OF I/Q IMBALANCE144

A. Direct Conversion Receiver145

Fig. 1 illustrates the basic DCR architecture in the presence146

of I/Q imbalances. The latter originate from I/Q filters with147

Fig. 1. Basic architecture of a direct-conversion receiver.

mismatched impulse responses gI (t) and gQ(t), as well as from 148

LO signals with an amplitude imbalance α and a phase error

Q1

149

ψ . We call s(t) and v(t) the baseband representations of the 150

transmitted signal and propagation channel, respectively. Then, 151

denoting by r(t) the complex envelope of the received wave- 152

form rRF (t) with respect to the carrier frequency f0, we have 153

r(t) = s(t)⊗ v(t)+ n(t), with n(t) being circularly symmet- 154

ric AWGN with two-sided power spectral density 2N0. From 155

the analysis in [16], the down-converted baseband signal x(t) = 156

xI (t)+ j xQ(t) can be written as 157

x(t) = e j2π� f t [s(t)⊗ h(t)] + e− j2π� f t [s∗(t)⊗ q(t)] + w(t)
(1)

where � f = f0 − fL O is the offset between the carrier and 158

LO frequencies, while the impulse responses h(t) and q(t) are 159

defined as

Q2

160

h(t) = v(t)⊗
[

p+(t)e− j2π� f t
]

q(t) = v∗(t)⊗
[

p−(t)e j2π� f t
]

(2)

with p+(t) = 0.5 · [gI (t)+ αgQ(t)e− jψ ] and p−(t) = 0.5 · 161

[gI (t)− αgQ(t)e jψ ]. Finally, the noise term w(t) is related to 162

n(t) by 163

w(t) = n(t)e j2π� f t ⊗ p+(t)+ n∗(t)e− j2π� f t ⊗ p−(t). (3)

Letting w(t) = wI (t)+ jwQ(t), it follows that wI (t) and 164

wQ(t) are zero-mean Gaussian processes with auto- and cross- 165

correlation functions 166

E{wI (t)wI (t + τ)} = N0[gI (τ )⊗ gI (−τ)]
E{wQ(t)wQ(t + τ)} = α2 N0[gQ(τ )⊗ gQ(−τ)]
E{wI (t)wQ(t + τ)} = −αN0 sinψ[gI (τ )⊗ gQ(−τ)]. (4)

Inspection of (4) reveals that w(t) is not circularly sym- 167

metric as its real and imaginary components are generally 168

cross-correlated and have different auto-correlation functions. 169

B. Signal Model 170

The investigated system is an OFDM burst-mode transceiver 171

where each block has length T and is preceded by a cyclic pre- 172

fix (CP) to avoid interblock interference. We denote by N the 173

number of available subcarriers and by 1/T the subcarrier spac- 174

ing. As specified in [17], a TP is appended in front of each data 175



IE
EE

Pr
oo

f

D’AMICO et al.: FREQUENCY ESTIMATION IN OFDM DIRECT-CONVERSION RECEIVERS 3

frame to facilitate the synchronization task. In particular, we176

assume that the TP has a periodic structure in the time-domain177

and is composed by M ≥ 2 identical segments [18], [19]. The178

basic segment comprises P time-domain samples (with P being179

a power of two) and is generated by feeding a sequence of180

pilot symbols c = [c(0), c(1), . . . , c(P − 1)]T into a P−point181

inverse DFT unit. Hence, denoting by s(k) the kth sample of182

the TP, we have183

s(k) = 1√
P

P−1∑
n=0

c(n)e j2πnk/P − Ng ≤ k ≤ M P − 1 (5)

where Ng is the CP length normalized by the signaling period184

Ts = T/N .185

After propagating through a multipath channel, the received186

signal rRF (t) is down-converted to baseband and sampled with187

period Ts using the DCR architecture of Fig. 1. Then, sam-188

ples belonging to the TP are arranged into M vectors xm =189

[xm(0), xm(1), . . . , xm(P − 1)]T (m = 0, 1, . . . ,M − 1), each190

of them having length P and corresponding to a specific TP191

segment. According to (1), the pth entry of xm can be written as192

xm(p) = e j[m−(M−1)/2]ϕa(p)+ e− j[m−(M−1)/2]ϕb(p)

+ wm(p) (6)

where wm(p) is the noise contribution and we have defined193

ϕ = 2πν

Q
(7)

with Q = N/P and ν � � f · T being the CFO normalized by194

the subcarrier spacing. Furthermore, a(p) and b(p) are given by195

a(p) = e j (M−1)ϕ/2e j2πνp/N [s(t)⊗ h(t)]t=pTs (8)

b(p) = e− j (M−1)ϕ/2e− j2πνp/N [s∗(t)⊗ q(t)]t=pTs (9)

where196

s(t) = 1√
P

P−1∑
n=0

c(n)e j2πnQt/T (10)

is the transmitted TP. In writing (8) and (9), we have borne197

in mind that [s(t)⊗ h(t)]t=pTs and [s∗(t)⊗ q(t)]t=pTs are198

periodic in p of period P due to the repetitive TP structure.199

To proceed further, we consider the following200

M−dimensional vectors201

x(p) = [x0(p), x1(p), . . . , xM−1(p)]
T p = 0, 1, . . . , P − 1

(11)

where x(p) is obtained by collecting the pth entry of {xm}M−1
m=0 .202

Hence, from (6) we get203

x(p) = u(ϕ)a(p)+ u(−ϕ)b(p)+ w(p) (12)

where w(p) = [w0(p), w1(p), . . . , wM−1(p)]T is a zero-mean204

Gaussian vector and205

u(ϕ) = e− j (M−1)ϕ/2
[
1, e jϕ, e j2ϕ, . . . , e j (M−1)ϕ

]T
. (13)

Inspection of (12) and (13) reveals that x(p) consists of 206

two spectral lines u(ϕ) and u(−ϕ), symmetrically positioned 207

around the origin and accounting for the direct signal and its 208

mirror image, respectively. In the ensuing discussion, we inves- 209

tigate the ML estimation of the normalized CFO ϕ in the 210

presence of the nuisance vectors a =[a(0), a(1), . . . , a(P − 211

1)]T and b =[b(0), b(1), . . . , b(P − 1)]T . In particular, we 212

begin by reviewing the CML estimator presented in [15], which 213

assumes b = 0, and evaluate its performance in the presence of 214

I/Q imbalance. Next, we assess the accuracy of the JML algo- 215

rithm proposed in [7], which jointly estimates (ϕ, a,b) without 216

exploiting any side information about b. Such theoretical analy- 217

sis will be used to compare the accuracy of CML and JML in the 218

presence of I/Q imbalance. Since the signal component is typ- 219

ically much stronger than its mirror image (i.e., ‖a‖ 	 ‖b‖), a 220

novel ML estimator of (ϕ, a,b) is eventually derived by putting 221

a constraint on the ratio ‖a‖2/‖b‖2. 222

To make the analysis mathematically tractable, we model the 223

noise term w(t) as a zero-mean circularly-symmetric Gaussian 224

(ZMCSG) complex random process. This amounts to say- 225

ing that {w(p); p = 0, 1, . . . , P − 1} are statistically indepen- 226

dent ZMCSG vectors with covariance matrix Kw = σ 2
wIM . 227

Although this assumption holds true only in the case of a per- 228

fectly balanced DCR scheme, it has been largely adopted in the 229

literature even in the presence of non-negligible RF imperfec- 230

tions [20]. In this work, the white noise assumption is employed 231

only to derive the frequency estimation algorithms and for their 232

performance analysis, while the true noise statistics shown in 233

(4) are used in the numerical simulations and for the CRB 234

evaluation. 235

III. CFO ESTIMATION IN THE ABSENCE OF I/Q 236

IMBALANCE 237

A. Estimator’s Design 238

The CML is proposed in [15] for an OFDM receiver free 239

from any RF imperfection. This scheme performs the joint ML 240

estimation of (ϕ, a) based on the following signal model 241

x(p) = u(ϕ)a(p)+ w(p) p = 0, 1, . . . , P − 1. (14)

The log-likelihood function (LLF) is expressed by [21] 242

�(ϕ̃, ã) = −N ln(πσ 2
w)− 1

σ 2
w

P−1∑
p=0

‖x(p)− u(ϕ̃)ã(p)‖2

(15)

and its maximization with respect to (ϕ̃, ã) leads to the follow- 243

ing CFO estimate 244

ϕ̂C M L = arg max
ϕ̃∈[−π,π)

{�C M L(ϕ̃)} (16)

where 245

�C M L(ϕ̃) =
P−1∑
p=0

∣∣∣uH (ϕ̃)x(p)
∣∣∣2
. (17)
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Taking (11) and (13) into account, we may put the metric246

�C M L(ϕ̃) in the equivalent form247

�C M L(ϕ̃) =
M−1∑
m=0

M−1∑
k=0

Re
{
χC M L ,m,k(ϕ̃)xH

m xk

}
(18)

with χC M L ,m,k(ϕ̃) = e j (m−k)ϕ̃ .248

B. Performance Analysis249

Since the CML is derived under the simplifying assumption250

b = 0, it is interesting to assess its accuracy in the presence of251

I/Q imbalance. For this purpose, we define the estimation error252

as εC M L = ϕ − ϕ̂C M L , and we analyse the CML performance253

assuming relatively small values of εC M L . Hence, following the254

approach outlined in [22], we get255

E{εC M L } � −E{� ′
C M L(ϕ)}

E{� ′′
C M L(ϕ)}

(19)

E
{
ε2

C M L

}
� E{[� ′

C M L(ϕ)]
2}

[E{� ′′
C M L(ϕ)}]2

(20)

where � ′
C M L(ϕ) and � ′′

C M L(ϕ) are the first and second order256

derivatives of �C M L(ϕ̃), respectively, evaluated at ϕ̃ = ϕ. In257

Appendix A it is shown that258

E{εC M L} = 6

M2 − 1
· q ′

M (ϕ)[Re(aH b)+ qM (ϕ)‖b‖2]

�M (ϕ)
(21)

with259

qM (ϕ) = sin(Mϕ)

M sinϕ
(22)

and260

�M (ϕ) = ‖a‖2 + [qM (ϕ)− γM (ϕ)]Re(aH b)

− [βM (ϕ)+ qM (ϕ)γM (ϕ)]‖b‖2. (23)

In the above equation, the quantities βM (ϕ) and γM (ϕ) are261

expressed by262

βM (ϕ) = 3

M2 − 1
[q ′

M (ϕ)]
2 and γM (ϕ) = 3

M2 − 1
q ′′

M (ϕ)

(24)

where q ′
M (ϕ) and q ′′

M (ϕ) are the first and second order deriva-263

tives of qM (ϕ), respectively. From (21)–(23) we see that ϕ̂C M L264

is a biased estimate of ϕ. The only exceptions occur in the265

absence of I/Q imbalance or when ϕ = 0, since in the latter266

case we have q ′
M (ϕ) = 0.267

In Appendix A we also evaluate the mean square estimation268

error (MSEE) of ϕ̂C M L , which is found to be269

E
{
ε2

C M L

}
= E2{εC M L } + 6σ 2

w

M(M2 − 1)
· AM (ϕ)

�2
M (ϕ)

+ 6Pσ 4
w

M2(M2 − 1)
· 1

�2
M (ϕ)

(25)

with270

AM (ϕ) = ‖a‖2 + 2qM (ϕ)Re(aH b)+ [βM (ϕ)+ q2
M (ϕ)]‖b‖2.

(26)

C. Remarks 271

i) Observing that qM (0) = 1, βM (0) = 0 and γM (0) = 272

−1, for ϕ = 0 we get AM (0) = �M (0) = ‖a + b‖2 and (25) 273

reduces to 274

E
{
ε2

C M L

}∣∣∣
ϕ=0

= 6σ 2
w

M(M2 − 1)‖a + b‖2

[
1 + Pσ 2

w

M‖a + b‖2

]
.

(27)

ii) In the absence of I/Q imbalance we have AM (ϕ) = 275

�M (ϕ) = ‖a‖2. In such a case, (25) becomes independent of 276

ϕ and takes the form 277

E
{
ε2

C M L

}∣∣∣
b=0

= 6σ 2
w

M(M2 − 1)‖a‖2

(
1 + Pσ 2

w

M‖a‖2

)
(28)

which further simplifies to 278

E
{
ε2

C M L

}∣∣∣
b=0,‖a‖2/σ 2

w→∞ = 6σ 2
w

M(M2 − 1)‖a‖2
(29)

at relatively high SNR values (i.e., for ‖a‖2/σ 2
w → ∞). It is 279

worth noting that the right-hand side of (29) is the CRB for 280

CFO estimation reported in [15]. This means that CML is 281

asymptotically efficient when b = 0. 282

IV. JOINT ML ESTIMATION OF THE UNKNOWN 283

PARAMETERS 284

A. Estimator’s Design 285

In this section we review the JML presented in [7], which 286

aims at jointly estimating the unknown parameters (ϕ, a,b). 287

After rewriting (12) as 288

x(p) = A2(ϕ)θ(p)+ w(p) p = 0, 1, . . . , P − 1 (30)

with A2(ϕ) = [u(ϕ)u(−ϕ)] and θ(p) = [a(p), b(p)]T , the 289

LLF takes the form 290

�2(ϕ̃, θ̃) = −N ln(πσ 2
w)− 1

σ 2
w

P−1∑
p=0

∥∥∥x(p)− A2(ϕ̃)θ̃(p)
∥∥∥2

(31)

where θ̃(p) � [ã(p), b̃(p)]T and θ̃ = {θ̃(0), θ̃(1), . . . , 291

θ̃(P − 1)}. The maximum of the LLF with respect to θ̃(p) is 292

attained at 293

θ̂(p; ϕ̃) = [AH
2 (ϕ̃)A2(ϕ̃)]

−1AH
2 (ϕ̃)x(p) (32)

which is next substituted into (31) in place of θ̃(p), yielding the 294

concentrated likelihood function 295

�2(ϕ̃) = −N ln(πσ 2
w)− 1

σ 2
w

P−1∑
p=0

xH (p)[IM − C2(ϕ̃)]x(p)

(33)

with C2(ϕ̃) = A2(ϕ̃)[AH
2 (ϕ̃)A2(ϕ̃)]−1AH

2 (ϕ̃). The ML esti- 296

mate of ϕ is eventually given by 297

ϕ̂J M L = arg max
ϕ̃∈[−π,π)

{�J M L(ϕ̃)} (34)
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where298

�J M L(ϕ̃) = M
P−1∑
p=0

xH (p)C2(ϕ̃)x(p). (35)

After some manipulations, it is found that the metric �J M L(ϕ̃)299

can also be written as300

�J M L(ϕ̃) =
M−1∑
m=0

M−1∑
k=0

Re
{
χJ M L ,m,k(ϕ̃)xH

m xk

}
(36)

where301

χJ M L ,m,k(ϕ̃)

= cos[(m − k)ϕ̃] − qM (ϕ̃) cos[(m + k − M + 1)ϕ̃]

1 − q2
M (ϕ̃)

(37)

and qM (ϕ̃) is defined in (22).302

It is worth noting that letting M = 2 yields C2(ϕ̃) = I2,303

which makes �J M L(ϕ̃) independent of ϕ̃. This amounts to304

saying that application of JML is possible only for M ≥ 3.305

Furthermore, since �J M L(ϕ̃) is an even function of ϕ̃, it306

exhibits two global maxima symmetrically positioned around307

ϕ̃ = 0. This results into an ambiguity in the sign of ϕ̂J M L308

which cannot be removed unless additional information is avail-309

able. One possible solution relies on the fact that the useful310

signal component is typically much stronger than its mirror311

image. Hence, we suggest to consider the positive solution of312

(34), say ϕ̂+
J M L , and compute the estimates â and b̂ from (32)313

after replacing ϕ̃ with ϕ̂+
J M L . Then, we set ϕ̂J M L = ϕ̂+

J M L if314

‖â‖ > ‖b̂‖, otherwise we choose ϕ̂J M L = −ϕ̂+
J M L .315

B. Performance Analysis316

The accuracy of ϕ̂J M L is assessed by applying the same317

methods used for ϕ̂C M L . Skipping the details, it is found318

that E{ϕ̂J M L} = ϕ, thereby indicating that JML is unbiased.319

Furthermore, denoting by εJ M L = ϕ − ϕ̂J M L the estimation320

error, the MSEE turns out to be321

E
{
ε2

J M L

}
= 6σ 2

w

[
M(M2 − 1)

]−1[
�M,1(ϕ)

(‖a‖2 + ‖b‖2) + 2�M,2(ϕ)Re(aH b)
]

+ 12Pσ 4
w�M,3(ϕ)

[
M2(M2 − 1)

]−1[
�M,1(ϕ)

(‖a‖2 + ‖b‖2) + 2�M,2(ϕ)Re(aH b)
]2

(38)

where322

�M,1(ϕ) = 1 − βM (ϕ)

1 − q2
M (ϕ)

(39)

�M,2(ϕ) = γM (ϕ)+ βM (ϕ)qM (ϕ)

1 − q2
M (ϕ)

(40)

and323

�M,3(ϕ) = 1

1 − q2
M (ϕ)

[
�M,1(ϕ)− qM (ϕ)�M,2(ϕ)

]
(41)

with βM (ϕ) and γM (ϕ) defined as in (24).324

C. Remarks 325

i) For M = 2 we have �M,1(ϕ) = �M,2(ϕ) = 0 and the 326

denominator in (38) vanishes. Such a result confirms that ϕ 327

cannot be estimated when M < 3. 328

ii) Using the fourth-order Maclaurin series of qM (ϕ) 329

qM (ϕ) � 1 − M2 − 1

6
ϕ2 + (M2 − 1)(3M2 − 7)

360
ϕ4 (42)

it is found that, for small values of ϕ, functions �M,i (ϕ) (i = 330

1, 2) can be approximated as 331

�M,i (ϕ) � M2 − 4

15
ϕ2 i = 1, 2 (43)

while �M,3(ϕ) � �M,1(ϕ)/2. Substituting these results into 332

(38) produces 333

E
{
ε2

J M L

}∣∣∣
ϕ→0

� 90σ 2
w

M(M2 − 1)(M2 − 4) ‖a + b‖2(
1 + Pσ 2

w

M ‖a + b‖2

)
· 1

ϕ2
(44)

which indicates that the accuracy of JML rapidly degrades as 334

ϕ approaches zero. The reason is that the two spectral lines in 335

(12) collapse into a single dc component when ϕ = 0, thereby 336

preventing the joint estimation of a and b. 337

iii) In the absence of any I/Q imbalance we have b = 0 and 338

(38) takes the form 339

E
{
ε2

J M L

}∣∣∣
b=0

= 6σ 2
w

M(M2 − 1) ‖a‖2
· 1

�M,1(ϕ)

+ 12Pσ 4
w

M2(M2 − 1) ‖a‖4
· �M,3(ϕ)

�2
M,1(ϕ)

(45)

which, at relatively high SNR values, reduces to 340

E
{
ε2

J M L

}∣∣∣
b=0,‖a‖2/σ 2

w→∞ = 6σ 2
w

M(M2 − 1) ‖a‖2
· 1

�M,1(ϕ)
.

(46)

Comparing (29) with (46) and recalling that 0 ≤ �M,1(ϕ) ≤ 1, 341

it turns out that CML outperforms (at least asymptotically) JML 342

when applied to an ideal receiver with no I/Q imbalance. This 343

result is not surprising since, in the considered scenario, ϕ̂C M L 344

is the ML estimate of ϕ. 345

V. CONSTRAINED JOINT ML ESTIMATION OF THE 346

UNKNOWN PARAMETERS 347

A. Estimator’s Design 348

JML is derived without considering the fact that in a practical 349

situation we have ‖a‖ 	 ‖b‖. We now illustrate how such a 350

side information can be exploited to improve the performance 351

of JML. Our approach aims at maximizing (31) subject to a 352

constraint on the SIR. The resulting scheme is referred to as the 353

constrained JML (CJML) and solves the problem 354

min
ϕ̃,θ̃

P−1∑
p=0

∥∥∥x(p)− A2(ϕ̃)θ̃(p)
∥∥∥2

s.t. ‖b̃‖2 ≤ δ‖ã‖2

(47)
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where δ > 0 is a design parameter. In Appendix B it is shown355

that CJML takes the form356

ϕ̂C J M L = arg max
ϕ̃∈[−π,π)

{�C J M L(ϕ̃)} (48)

where the metric �C J M L(ϕ̃) is found to be357

�C J M L(ϕ̃) =
M−1∑
m=0

M−1∑
k=0

χC J M L ,m,k(ϕ̃)xH
m xk (49)

with358

χC J M L ,m,k(ϕ̃) =
{

2ζ1(ϕ̃)− M[ζ 2
1 (ϕ̃)− 2qM (ϕ̃)ζ1(ϕ̃)ζ2(ϕ̃)

+ζ 2
2 (ϕ̃)]

}
e j (m−k)ϕ̃ +

{
2ζ3(ϕ̃)− M[ζ 2

3 (ϕ̃)

−2qM (ϕ̃)ζ2(ϕ̃)ζ3(ϕ̃)+ ζ 2
2 (ϕ̃)]

}
e− j (m−k)ϕ̃

+ 2
{

M[ζ1(ϕ̃)+ ζ3(ϕ̃)]ζ2(ϕ̃)− MqM (ϕ̃)[ζ1(ϕ̃)ζ3(ϕ̃)

+ζ 2
2 (ϕ̃)]M[ζ1(ϕ̃)] − 2ζ2(ϕ̃)

}
cos[(m + k − M + 1)ϕ̃]

(50)

In the above equation, functions ζ1(ϕ̃), ζ2(ϕ̃) and ζ3(ϕ̃) depend359

on δ and are expressed by360

ζ1(ϕ̃) = [M + λ(ϕ̃)]/D(ϕ̃) (51)

ζ2(ϕ̃) = MqM (ϕ̃)/D(ϕ̃) (52)

ζ3(ϕ̃) = [M − δλ(ϕ̃)]/D(ϕ̃) (53)

with D(ϕ̃) = [M + λ(ϕ̃)][M − δλ(ϕ̃)] − M2q2
M (ϕ̃) and361

λ(ϕ̃) = max

⎛
⎝0,

ϒ2(ϕ̃)−
√
ϒ2

2 (ϕ̃)− ϒ1(ϕ̃)ϒ3(ϕ̃)

ϒ1(ϕ̃)

⎞
⎠ . (54)

Furthermore, we have362

ϒ1(ϕ̃) = δ
(
δ‖t2(ϕ̃)‖2 − ‖t1(ϕ̃)‖2

)
(55)

ϒ2(ϕ̃) = Mδ
[
‖t1(ϕ̃)‖2 + ‖t2(ϕ̃)‖2

−2qM (ϕ̃)Re{tH
1 (ϕ̃)t2(ϕ̃)}

]
(56)

ϒ3(ϕ̃) = M2
{[

q2
M (ϕ̃)− δ

]
‖t1(ϕ̃)‖2

− 2qM (ϕ̃)(1 − δ)Re{tH
1 (ϕ̃)t2(ϕ̃)}

+[1 − δ q2
M (ϕ̃)]‖t2(ϕ̃)‖2

}
(57)

where t1 and t2 are P-dimensional vectors with entries363

[t1(ϕ̃)]p = uH (ϕ̃)x(p) and [t2(ϕ̃)]p = uH (−ϕ̃)x(p) for p =364

0, 1, . . . , P − 1.365

Since evaluating the theoretical performance of CJML is366

extremely challenging, the accuracy of this scheme will be367

assessed in Sect. VII by means of numerical simulations.368

B. Remarks369

i) When δ approaches zero, we have limδ→0 λ(ϕ̃) = +∞ and370

limδ→0 δλ(ϕ̃) = 0. Hence, from (51)–(53) it is found that ζ1(ϕ̃)371

approaches 1/M , while ζ2(ϕ̃) and ζ3(ϕ̃) become vanishingly 372

small. This leads to 373

lim
δ→0

χC J M L ,m,k(ϕ̃) = 1

M
e j (m−k)ϕ̃ = 1

M
χC M L ,m,k(ϕ̃) (58)

which means that CJML reduces to CML. The reason is that 374

letting δ = 0 in the constraint ‖b‖2 ≤ δ‖a‖2 amounts to putting 375

b = 0, which is just the underlying assumption of CML. 376

ii) When δ goes to infinity, we have limδ→+∞ λ(ϕ̃) = 377

limδ→+∞ δλ(ϕ̃) = 0, leading to 378

lim
δ→+∞ ζ1(ϕ̃) = lim

δ→+∞ ζ3(ϕ̃) = 1

M[1 − q2
M (ϕ̃)]

lim
δ→+∞ ζ2(ϕ̃) = qM (ϕ̃)

M[1 − q2
M (ϕ̃)]

. (59)

In such a case it is found that 379

lim
δ→+∞χC J M L ,m,k(ϕ̃)

= 2

M
· cos[(m − k)ϕ̃] − qM (ϕ̃) cos[(m + k − M + 1)ϕ̃]

1 − q2
M (ϕ̃)

(60)

which, compared with (37), reveals that CJML reduces to JML. 380

This fact can be explained by observing that letting δ → +∞ 381

amounts to removing any constraint on the magnitude of b. 382

The above remarks qualify CJML as a general ML-based 383

estimator, which incorporates both CML and JML as special 384

cases when δ → 0 and δ → +∞, respectively. 385

VI. COMPUTATIONAL COMPLEXITY OF CML, JML, AND 386

CJML 387

A. CML Algorithm 388

In this section we assess the complexity of the investigated 389

schemes in terms of real multiplications (RMs) and real addi- 390

tions (RAs). For this purpose, we observe that a complex 391

multiplication is equivalent to four RMs plus two RAs, while 392

a complex addition involves two RAs. 393

We start by rewriting (17) in the form

�C M L(ϕ̃) = ‖t1(ϕ̃)‖2

where [t1(ϕ̃)]p = uH (ϕ̃)x(p), for p = 0, 1, . . . , P − 1. Since 394

the computation of [t1(ϕ̃)]p requires M complex multiplica- 395

tions and M − 1 complex additions, evaluating t1(ϕ̃) needs 396

4P M RMs and 4P M − 2P RAs. Additional 2P RMs and 397

2P − 1 RAs are required to obtain ‖t1(ϕ̃)‖2, so that comput- 398

ing �C M L(ϕ̃) for each ϕ̃ needs 4P M + 2P RMs and 4P M − 399

1 RAs. 400

B. JML Algorithm 401

The complexity of JML is assessed by reformulating (35) as 402

�J M L(ϕ̃) = 1

1 − q2
M (ϕ̃)

[
‖t1(ϕ̃)‖2 + ‖t2(ϕ̃)‖2

−2qM (ϕ̃)Re{tH
1 (ϕ̃)t2(ϕ̃)}

]
(61)



IE
EE

Pr
oo

f

D’AMICO et al.: FREQUENCY ESTIMATION IN OFDM DIRECT-CONVERSION RECEIVERS 7

TABLE I
COMPLEXITY OF THE INVESTIGATED SCHEMES

where [t2(ϕ̃)]p = uH (−ϕ̃)x(p) for p = 0, 1, . . . , P − 1.403

Based on the results obtained for the CML algorithm, it is404

shown that the computation of a single value of �J M L(ϕ̃)405

requires 8P M + 6P + 4 RMs plus 8P M + 2P RAs.406

C. CJML Algorithm407

We first observe that, once t1(ϕ̃) and t2(ϕ̃) have been com-408

puted, evaluating ϒ1(ϕ̃), ϒ2(ϕ̃), and ϒ3(ϕ̃) through (55)–(57)409

requires additional 6P + 14 RMs and 6P + 5 RAs. Also, given410

ϒ1(ϕ̃), ϒ2(ϕ̃), and ϒ3(ϕ̃), the computation of λ(ϕ̃) through411

(54) involves 4 RMs and 2 RAs. Considering the calculation412

of t1(ϕ̃) and t2(ϕ̃), we conclude that computing λ(ϕ̃) requires a413

total of 8P M + 6P + 18 RMs and 8P M + 2P + 7 RAs.414

Now, we focus on the computation of �C J M L(ϕ̃) through415

(85) which, after neglecting irrelevant terms independent of ϕ̃,416

is equivalent to417

�C J M L(ϕ̃) = M
∥∥â

∥∥2 + M‖b̂‖2 − 2Re{âH t1(ϕ̃)}
− 2Re{b̂H t2(ϕ̃)} + 2MqM (ϕ)Re{b̂H â}. (62)

Assuming that λ(ϕ̃), and hence uH (ϕ̃)x(p) = [t1(ϕ̃)]p and418

uH (−ϕ̃)x(p) = [t2(ϕ̃)]p, are available, the calculation of â and419

b̂ through (84a)–(84b) requires a total of 13P RMs and 7P420

RAs. Additional 2P RMs and 2P − 1 RAs are required for421

the computation of each quantity
∥∥â

∥∥2, ‖b̂‖2, Re{âH t1(ϕ̃)},422

Re{b̂H t2(ϕ̃)} and Re{b̂H â}, while 4 additional RMs and 4 RAs423

are needed for evaluating the right-hand side of (62). It can424

be concluded that the computation of �C J M L(ϕ̃) for each ϕ̃425

requires a total of 8P M + 29P + 22 RMs and 8P M + 19P +426

6 RAs.427

Table I summarizes the number of real operations involved428

in the computation of �C M L(ϕ̃), �J M L(ϕ̃), and �C J M L(ϕ̃)429

as a function of M and P . The rightmost column reports430

the overall complexity required in a WLAN scenario, where431

the useful part of the TP (excluding the CP) is composed by432

M = 8 repeated segments carrying P = 16 samples. These fig-433

ures indicate that CJML is computationally more demanding434

than CML and JML, since it leads to an increase of the system435

complexity by a factor 2.8 and 1.3, respectively.436

VII. CRB ANALYSIS437

It is interesting to compare the performance of the estimation438

algorithms illustrated in the previous section with the relevant439

CRB. The latter is computed from (30) using the true statis-440

tical distribution of wI (t) and wQ(t) as given in (4). For this441

purpose, we arrange the samples xm(p) = x I
m(p)+ j x Q

m (p)442

into a real-valued vector x = [x I
0 (0), x Q

0 (0), x I
0 (1), x Q

0 (1) . . .443

x I
M−1(P − 1), x Q

M−1(P − 1)]T with 2P M entries. Then, from 444

(6) we can write 445

x = η + w (63)

where w = [w I
0(0), w

Q
0 (0), w

I
0(1), w

Q
0 (1) · · ·w I

M−1(P − 446

1), wQ
M−1(P − 1)]T is the noise contribution, with w I

m(p) 447

and w
Q
m (p) being the real and imaginary parts of wm(p), 448

respectively. Furthermore, letting a(p) = aI (p)+ jaQ(p) and 449

b(p) = bI (p)+ jbQ(p), we have 450

η = Qz (64)

with z = [zT (0) zT (1) · · · zT (P − 1)]T and z(p) = 451

[aI (p), aQ(p), bI (p), bQ(p)]T , while Q is a matrix of 452

dimension 2P M × 4P with the following structure 453

Q = [
QT

0 QT
1 · · · QT

M−1

]T
. (65)

In the above equation, Qm is a 2P × 4P matrix 454

Qm = diag{Rm,Rm, . . . ,Rm︸ ︷︷ ︸
P

} m = 0, 1, . . . ,M − 1

(66)

where Rm is defined as 455

Rm =
[

cm(ϕ) −sm(ϕ) cm(ϕ) sm(ϕ)

sm(ϕ) cm(ϕ) −sm(ϕ) cm(ϕ)

]
(67)

with cm(ϕ) and sm(ϕ) being a shorthand notation for cos[(m − 456
M−1

2 )ϕ] and sin[(m − M−1
2 )ϕ], respectively. For notational 457

simplicity, in (65) we have omitted the dependence of Q on ϕ. 458

In Appendix C it is shown that 459

CRB(ϕ) = 1

zT Q̇T

[
C−1
w − C−1

w Q
(

QT C−1
w Q

)−1
QT C−1

w

]
Q̇z

(68)

where Cw is the correlation matrix of w and Q̇ is the derivative 460

of Q with respect to ϕ. A simpler expression is obtained by 461

assuming a white-noise scenario wherein Cw = (σ 2
w/2)I2P M . 462

In such a case, after lengthy computations it is found that (68) 463

takes the form 464

CRB(ϕ) = 6σ 2
w

[
M(M2 − 1)

]−1[
�M,1(ϕ)

(‖a‖2 + ‖b‖2) + 2�M,2(ϕ)Re(aH b)
]

(69)

with �M,1(ϕ) and �M,2(ϕ) defined as in (39) and (40). It is 465

worth noting that, at relatively high SNR values, the accuracy 466

of ϕ̂J M L given in (38) approaches the CRB in (69), meaning 467

that JML is asymptotically efficient in the presence of AWGN. 468

VIII. SIMULATION RESULTS 469

A. Simulation Model 470

The investigated system is compliant with the IEEE 802.11a 471

standard for WLANs [17]. Specifically, the DFT size is N = 64 472
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with a signaling interval Ts = 50 ns which corresponds to a473

subcarrier distance of 312.5 kHz. The TP is composed by474

ten repeated segments of length P = 16. By considering the475

first two segments as the CP of the TP, the remaining M = 8476

segments are exploited for CFO recovery. We adopt a discrete-477

time channel model and collect the Ts-spaced samples of v(t)478

into a vector v = [v(0), v(1), . . . , v(Lv − 1)]T . The entries of479

v are independent and circularly symmetric Gaussian random480

variables with zero-mean and power481

E{|v(k)|2} = σ 2
v exp(−k/Lv) k = 0, 1, . . . , Lv − 1

(70)

where σ 2
v is chosen such that E{‖v‖2} = 1. Unless otherwise482

specified, we consider the following two scenarios [7]:483

1) Frequency-Selective I/Q Imbalance (FS-I/Q): the ana-484

log I/Q filters have discrete-time impulse responses gI =485

[0, 1, μ]T and gQ = [μ, 1, 0]T with μ = 0.1, while the LO-486

induced imbalance is characterized by α = 1.122 (1 dB) and487

ψ = 5 degrees. From (2), it follows that h(k) and q(k) have488

support k = 0, 1, . . . , L − 1, with L = Lv + 2.489

2) Frequency-Flat I/Q Imbalance (FF-I/Q): only fre-490

quency independent imbalance is considered with α = 1.122491

and ψ = 5◦, while the I/Q filters have ideal response [0, 1, 0]T .492

In order to assess the sensitivity of the considered schemes493

to the amount of RF imperfections, we also consider a general494

set-up wherein a coefficient ρ ∈ [0, 4] is used to specify the495

I/Q imbalance parameters as μ = 0.1ρ, α = 1 + 0.122ρ and496

ψ = 5ρ degrees. Clearly, ρ = 0 corresponds to the absence of497

any I/Q imbalance, while ρ = 1 yields the FS-I/Q scenario.498

The average SIR is defined in [7] and can expressed as499

SIR = (1 + α2)(1 + μ2)+ 2α cosψ

(1 + α2)(1 + μ2)− 2α cosψ
(71)

yielding the values of 19.9 dB and 22.8 dB for the FS-I/Q and500

FF-I/Q cases, respectively.501

Assuming a carrier frequency of 5 GHz and an oscillator502

instability of ±30 parts-per-million (ppm), the maximum value503

of the normalized CFO is approximately given by νmax = 0.5.504

Hence, recalling that Q = N/P = 4, from (7) it follows that505

ϕ ∈ [−π/4, π/4]. The global maximum of the CFO metrics506

shown in (18), (36) and (49) is found by evaluating the met-507

ric over a grid of K uniformly-spaced values ϕ̃k = −π/4 +508

kπ/(2K ) for k = 0, 1, . . . , K (coarse search), followed by a509

parabolic interpolation (fine search). Parameter K has been set510

to 128 since no significant improvement is achieved when using511

K > 128.512

B. Performance Assessment for FO Estimation513

An important design parameter for CJML is the coefficient δ,514

which specifies the constraint on the SIR level. Fig. 2 shows the515

accuracy of CJML as a function of δ for different SNR values516

and with ϕ uniformly distributed over the range [−π/4, π/4].517

These results are obtained in the FS-I/Q scenario, and are qual-518

itatively similar to those pertaining to the FF-I/Q case (not519

shown for space limitations). As is seen, at intermediate and520

low SNR values the MSEE monotonically increases with δ,521

Fig. 2. Accuracy of CJML vs δ for different SNR values in the FS-I/Q scenario.

Fig. 3. Accuracy of the CFO estimators vs ρ with SNR = 15 dB.

while at high SNR values a global minimum occurs around 522

δ = −22 dB. Extensive numerical measurements carried out in 523

the general set-up with ρ ∈ [0, 4] indicate that nearly optimal 524

performance can be achieved by letting δ = (SIR)−1, which is 525

therefore used in all subsequent simulations. 526

Figs. 3 and 4 illustrate the MSEE of the CFO estimators as 527

a function of ρ with ϕ uniformly distributed over [−π/4, π/4]. 528

The SNR is 15 dB in Fig. 3 and 30 dB in Fig. 4. The solid 529

line illustrates theoretical analysis for CML, while for JML and 530

CJML it is used to facilitate the reading of the plot. It turns out 531

that the accuracy of JML is virtually independent of ρ, while 532

CML exhibits a remarkable sensitivity to the amount of I/Q 533

imbalances. However, at SNR = 15 dB the CML outperforms 534

JML for all the considered values of ρ, while at SNR = 30 dB 535

CML is worse than JML only for ρ > 1.9. These results indi- 536

cate that, contrary to the well-established belief, CML performs 537

satisfactorily in most practical situations and the adoption of 538

more sophisticated schemes is justified only at high SNR val- 539

ues and in the presence of extremely severe RF imbalances. We 540

also see that, in the presence of non-negligible I/Q imbalances, 541

the best accuracy is achieved by CJML. The reason is that this 542

scheme is able to find a good balance between CML and JML 543

thanks to a proper design of δ. In particular, for ρ = 0 we have 544

δ = 0 and CJML reduces to CML, while for large values of ρ it 545

departs from CML and approaches JML. 546

Fig. 5 illustrates the MSEE of the CFO estimators as a func- 547

tion of ϕ measured at SNR = 15 dB in the FS-I/Q scenario. 548
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Fig. 4. Accuracy of the CFO estimators vs ρ with SNR = 30 dB.

Fig. 5. Accuracy of the CFO estimators vs ϕ in the FS-I/Q scenario with SNR
= 15 dB.

The CRB reported in (69) is also shown for comparison. As549

expected, JML performs poorly for small CFO values since550

in this case the useful signal component and its mirror image551

collapse into a single dc line and cannot be easily resolved.552

This is also reflected in the CRB curve, which goes to infin-553

ity as ϕ approaches zero. In contrast, the accuracy of both CML554

and JCML depends weakly on the CFO value and is remark-555

ably better than that of JML for |ϕ| < 0.1π . Since CML is556

derived by ignoring the presence of I/Q imbalances, the fact that557

this scheme outperforms JML may appear surprising. Actually,558

such a behaviour can be explained by observing that for ϕ = 0559

the received signal in (12) reduces to a dc line embedded in560

(approximately) white Gaussian noise and, due to the absence561

of any mirror interference, CML provides nearly optimum per-562

formance. On the other hand, in this scenario JML cannot work563

properly due to the impossibility of providing independent esti-564

mates of the nuisance vectors a and b. It is worth noting that the565

theoretical analysis of CML and JML is in good agreement with566

simulation results except when we consider JML at small CFO567

values. Such a discrepancy is due to the fact that the MSEE568

shown in (38) is derived using the approach of [22], which is569

valid in the presence of small estimation errors. It is also worth570

recalling that no tangible difference has been observed between571

the true CRB (68) and its approximation (69), meaning that the572

noise term w(t) in (3) can reasonably be approximated as a573

circularly symmetric wihite Gaussian process.574

Fig. 6. Accuracy of the CFO estimators vs ϕ in the FS-I/Q scenario with SNR
= 30 dB.

Fig. 7. Bias of the CFO estimates ϕ in the FS-I/Q scenario with SNR = 30 dB.

The results shown in Fig. 6 are obtained under the same oper- 575

ating conditions of Fig. 5, except that the SNR is now set to 576

30 dB. In this case, we see that CML outperforms JML only 577

when |ϕ| is approximately smaller than 0.05π . Such behaviour 578

is justified by the fact that, at large SNR values, the MSEE 579

of JML becomes proportional to (SNR)−1, while the accuracy 580

of CML is essentially determined by the bias term E2{εC M L} 581

present in (25), which vanishes only for specific values of ϕ. 582

The CJML provides better estimates than CML except in the 583

proximity of ϕ = 0. Compared to JML, it performs slightly 584

worse when |ϕ| > 0.05π , while a significant improvement is 585

observed at smaller CFO values. 586

Fig. 7 illustrates the bias of the investigates schemes as a 587

function of ϕ in the FS-I/Q scenario with the SNR fixed to 588

30 dB. As is seen, the bias of CJML and CML is smaller than 589

1.5 × 10−3, while higher values are observed with JML. This 590

contradicts the theoretical analysis of Sect. IV.B, where it was 591

shown that E{ϕ̂J M L} = ϕ. Such a discrepancy can be justified 592

by recalling that our theoretical results are accurate only in the 593

presence of small estimation errors. 594

Figs. 8 and Fig. 9 illustrate the MSEE of the investigated 595

schemes as a function of the SNR for the FS-I/Q and FF- 596

I/Q scenarios, respectively, when ϕ varies uniformly over the 597

range [−π/4, π/4]. Comparisons are made with available CFO 598

recovery methods which exploit a repeated TP to cope with I/Q 599
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Fig. 8. Accuracy of the CFO estimators vs SNR in the FS-I/Q scenario.

Fig. 9. Accuracy of the CFO estimators vs SNR in the FF-I/Q scenario.

imbalances. Specifically, we consider the ESPRIT-based esti-600

mator illustrated in [11] and other heuristic algorithms proposed601

by Pan and Phoong (PP) in [8], by Kume, Lin and Yamashita602

(KLY) in [10], and by Wang, Xue, Liu, Ye and Ren (WXLYR)603

in [9]. At SNR values smaller than 24 dB, both CML and CJML604

outperform all the other methods, with CJML taking the lead as605

the SNR increases. Compared to CML and CJML, the ESPRIT-606

based scheme entails a loss of approximately 5 dB at medium607

SNR values, which increases to 10 dB when considering the608

JML. Such a remarkable loss is due to the poor accuracy of609

JML in case of small CFOs. The PP algorithm operates sat-610

isfactorily at medium-to-high SNR values, while a significant611

degradation is observed when the SNR decreases. As for KLY612

and WXLYR, they perform quite poorly. This is particularly613

evident for the latter scheme, whose MSEE curve is plagued by614

a considerable floor.615

Fig. 10 provides the bit-error-rate (BER) performance of616

an uncoded 64-QAM transmission when CFO correction is617

accomplished by resorting to CML, JML or CJML. We con-618

sider the general simulation set-up with ρ varying in the interval619

[0, 4] and with the SNR value fixed to 30 dB. In order to distin-620

guish the impact of the frequency estimates from that of other621

system impairments, ideal compensation of the I/Q imbalance622

parameters and ideal channel equalization is assumed. The BER623

value obtained in the presence of perfect frequency knowledge624

(PFK) is also shown as a benchmark. As expected, the BER625

curves exhibit the same trend of the MSEE curves shown in626

Fig. 10. BER for a 64-QAM modulation vs ρ with SNR = 30 dB.

Fig. 4. In particular, we see that the error-rate increases with 627

ρ when using CML, while a reduced sensitivity to the I/Q 628

imbalance is observed when adopting JML and CJML. For 629

ρ = 1 all the considered schemes provides similar BER results, 630

thereby confirming that CML can perform satisfactorily in most 631

practical situations. 632

IX. CONCLUSIONS 633

We have presented an analytical investigation of the fre- 634

quency recovery problem in a direct-conversion receiver 635

affected by frequency selective I/Q imbalance. The first objec- 636

tive was to check whether traditional CFO estimators can be 637

applied or not to a DCR architecture. For this purpose, we 638

have analytically assessed the impact of the I/Q imbalance 639

on the performance of the conventional ML (CML) scheme. 640

Next, we have reviewed and analyzed the JML method, which 641

provides joint estimates of the CFO, the useful signal compo- 642

nent and its mirror image. Finally, we have derived a novel 643

scheme (CJML), which exploits some side-information about 644

the signal-to-interference ratio. It was shown that both CML 645

and JML can be obtained from CJML by properly adjusting the 646

value of a design parameter. In response to the questions raised 647

in Sect. I, the main conclusions that can be drawn from this 648

study are as follows: 649649

1) CML performs satisfactorily in most situations and out- 650

performs JML at SNR values of practical interest in 651

both the FS-I/Q and FF-I/Q scenarios. This result con- 652

tradicts the common idea that conventional frequency 653

recovery schemes for OFDM systems perform poorly in 654

the presence of I/Q imbalance; 655

2) CJML is able to get an effective balance between CML 656

and JML, and exhibits an excellent accuracy over a 657

large range of CFO and SNR values at the price of an 658

increased complexity. In a forward-looking perspective, 659

its improved resilience against I/Q imbalances can be 660

exploited to relax the requirements on hardware compo- 661

nents for DCR architectures; 662

3) JML performs poorly for small CFO values and, in 663

the medium SNR range, the MSEE analysis exhibits a 664

loss of approximately 10 dB with respect to CML and 665
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CJML. A remarkable loss is also observed with alterna-666

tive schemes based on the ESPRIT algorithm or other667

heuristic methods;668

4) The question of whether the improved accuracy of CJML669

justifies or not its increased complexity with respect to670

CML is controversial. The answer depends on many dif-671

ferent factors, such as the cost of hardware components,672

the impact of the increased power consumption on the673

battery life and the relative weight of the CJML complex-674

ity with respect to that of other fundamental functions,675

including data decoding. Overall, we expect that such676

a relative weight is marginal since data decoding must677

be continuously performed in the receiver, while fre-678

quency synchronization is typically accomplished once679

per frame.680

APPENDIX A681

In this Appendix we evaluate the mean and the MSEE of the682

CML estimate given in (16) under the simplifying assumption683

that the noise term w(t) in (1) is a ZMCSG complex random684

process. We begin by taking the derivatives of �C M L(ϕ) in685

(18), yielding686

� ′
C M L(ϕ) =

M−1∑
m=0

M−1∑
k=0

(k − m)Im
{

xH
m xke j (m−k)ϕ

}
(72)

� ′′
C M L(ϕ) = −

M−1∑
m=0

M−1∑
k=0

(k − m)2Re
{

xH
m xke j (m−k)ϕ

}
(73)

and rewrite (6) in vector form as687

xm = ηm + wm (74)

where ηm = ae j[m−(M−1)/2]ϕ + be− j[m−(M−1)/2]ϕ , while688

{wm; m = 0, 1, . . . ,M − 1} are statistically independent689

ZMCSG random vectors with covariance matrix σ 2
wIP .690

Denoting by δ(n) the Kronecker delta function, from (74) we691

get692

E
{

xH
m xke j (m−k)ϕ

}
= ηH

m ηke j (m−k)ϕ + σ 2
wPδ(m − k)e j (m−k)ϕ

(75)

which, after substituting into (72) and (73), produces693

E{� ′
C M L(ϕ)} = M2q ′

M (ϕ)
[
qM (ϕ)‖b‖2 + Re(aH b)

]
(76)

E{� ′′
C M L(ϕ)} = M2(M2 − 1)

6

{
[βM (ϕ)+ qM (ϕ)γM (ϕ)]‖b‖2

−‖a‖2 − [qM (ϕ)− γM (ϕ)]Re(aH b)
}

(77)

where qM (ϕ), βM (ϕ) and γM (ϕ) are defined in (22) and (24).694

Finally, inserting these results into (19), yields E{εC M L } as695

given in (21).696

Now, we concentrate on the computation of the MSEE. From697

(20), it turns out that we need the expectation of [� ′
C M L(ϕ)]

2698

which, using (72), can be rewritten as699

[� ′
C M L(ϕ)]

2 = −
M−1∑
m=0

M−1∑
k=0

M−1∑
n=0

M−1∑
�=0

(m − k)(n − �)

× e j (m−k)ϕe j (n−�)ϕxH
m xkxH

n x�. (78)

The expectation of (78) is computed by exploiting the identity 700

E{wH
m wkwH

n w�} = P2σ 4
wδ(m − k)δ(n − �)

+ Pσ 4
wδ(m − �)δ(k − n) (79)

and is found to be 701

E
{

[� ′
C M L(ϕ)]

2
}

= [
E{� ′

C M L(ϕ)}
]2

+ M3(M2 − 1)

6
AM (ϕ)σ

2
w + P

M2(M2 − 1)

6
σ 4
w (80)

where AM (ϕ) is defined in (26). Finally, taking (77) and (80) 702

into account, yields the MSEE of ϕ̂C M L as expressed in (25). 703

APPENDIX B 704

In this Appendix we solve the optimization problem (47), 705

which is reformulated as 706

min
ϕ̃

{
min
θ̃

P−1∑
p=0

∥∥∥x(p)− A2(ϕ̃)θ̃(p)
∥∥∥2

}
s.t. ‖b̃‖2 ≤ δ‖ã‖2

(81)

We start by solving the inner optimization problem with respect 707

to θ̃ and for a fixed ϕ̃. Applying the Karush-Kuhn-Tucker 708

(KKT) conditions to the Lagrangian function 709

L(ã, b̃, λ) =
P−1∑
p=0

∥∥∥x(p)− ã(p)u(ϕ̃)− b̃(p)u(−ϕ̃)
∥∥∥2

+ λ(‖b̃‖2 − δ‖ã‖2) (82)

we obtain 710

∂

∂ ã∗(p)
L(ã, b̃, λ)=

[
‖u(ϕ̃)‖2 − λδ

]
ã(p)+ uH (ϕ̃)u(−ϕ̃)b̃(p)

− uH (ϕ̃)x(p) = 0 (83a)

∂

∂ b̃∗(p)
L(ã, b̃, λ)=uH (−ϕ̃)u(ϕ̃)ã(p)+

[
‖u(−ϕ̃)‖2 + λ

]
b̃(p)

− uH (−ϕ̃)x(p) = 0 (83b)

for p = 0, 1, . . . , P − 1, with 711

λ ≥ 0 ‖b̃‖2 − δ‖ã‖2 ≤ 0 λ(‖b̃‖2 − δ‖ã‖2) = 0.
(83c)

After some algebraic computations, the solution of the KKT 712

equations is found to be 713

â(p) = [M + λ(ϕ̃)]uH (ϕ̃)x(p)− uH (ϕ̃)u(−ϕ̃)uH (−ϕ̃)x(p)
[M − δλ(ϕ̃)][M + λ(ϕ̃)] − |uH (ϕ̃)u(−ϕ̃)|2

(84a)
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b̂(p)= [M−δλ(ϕ̃)]uH (−ϕ̃)x(p)−uH (−ϕ̃)u(ϕ̃)uH (ϕ̃)x(p)
[M − δλ(ϕ̃)][M + λ(ϕ̃)] − |uH (ϕ̃)u(−ϕ̃)|2

(84b)

λ(ϕ̃) = max

⎛
⎝0,

ϒ2(ϕ̃)−
√
ϒ2

2 (ϕ̃)−ϒ1(ϕ̃)ϒ3(ϕ̃)

ϒ1(ϕ̃)

⎞
⎠ (84c)

where ϒ1(ϕ̃), ϒ2(ϕ̃) and ϒ3(ϕ̃) are defined in (55)–(57). The714

optimal value of ϕ̃ that solves (81) is eventually obtained by715

searching for the global minimum of the concentrated likeli-716

hood function, yielding717

ϕ̂c = arg min
ϕ̃∈[−π,π)

P−1∑
p=0

∥∥∥x(p)− â(p)u(ϕ̃)− b̂(p)u(−ϕ̃)
∥∥∥2
.

(85)

Taking (84a) and (84b) into account, after some computations718

we obtain the CJML estimator shown in (48)–(50).719

APPENDIX C720

In this Appendix we compute the CRB for the estimation of721

ϕ based on the signal model shown in (63) and (64). For this722

purpose, we collect the unknown parameters into a (4P + 1)-723

dimensional vector ς = [ϕ zT ]T and let Cw be the correlation724

matrix of w in (63). Then, the entries of the Fisher information725

matrix (FIM) Fς are given by [21]726

[
Fς

]
k1,k2

=
(
∂η

∂ςk1

)T

C−1
w

(
∂η

∂ςk2

)
1 ≤ k1, k2 ≤ 4P + 1.

(86)

Taking (65)–(67) into account, after lengthy computations727

we get728

Fς =
[
γ mT

m M

]
(87)

where γ = zT Q̇T C−1
w Q̇z, m = QT C−1

w Q̇z and M =729

QT C−1
w Q. In the latter expressions, Q̇ is defined as730

Q̇ = ∂Q
∂ϕ

= [
Q̇T

0 Q̇T
1 · · · Q̇T

M−1

]T
(88)

with Q̇m = diag{Ṙm, Ṙm, . . . , Ṙm︸ ︷︷ ︸
P

} and731

Ṙm =
(

m − M − 1

2

)[ −sm(ϕ) −cm(ϕ) −sm(ϕ) cm(ϕ)

cm(ϕ) −sm(ϕ) −cm(ϕ) −sm(ϕ)

]
.

(89)

The CRB for the estimation of ϕ corresponds to
[
F−1

ς

]
1,1

. Using732

well-known results for the inverse of a partitioned matrix [21],733

we obtain734

CRB(ϕ) = 1

γ − mT M−1m
(90)

which reduces to (68) after using the expressions of γ , m 735

and M. 736
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Frequency Estimation in OFDM Direct-Conversion
Receivers Using a Repeated Preamble

1

2
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and Marco Moretti, Member, IEEE

3

4

Abstract—This paper investigates the problem of carrier5
frequency offset (CFO) recovery in an OFDM receiver affected6
by frequency-selective in-phase/quadrature (I/Q) imbalances. The7
analysis is based on maximum-likelihood (ML) methods and relies8
on the transmission of a training preamble with a repetitive struc-9
ture in the time domain. After assessing the accuracy of the10
conventional ML (CML) scheme in a scenario characterized by11
I/Q impairments, we review the joint ML (JML) estimator of all12
unknown parameters and evaluate its theoretical performance.13
In order to improve the estimation accuracy, we also present a14
novel CFO recovery method that exploits some side-information15
about the signal-to-interference ratio. It turns out that both CML16
and JML can be derived from this scheme by properly adjusting17
the value of a design parameter. The accuracy of the investigated18
methods are compared with the relevant Cramer–Rao bound. Our19
results can be used to check whether conventional CFO recovery20
algorithms can work properly or not in the presence of I/Q imbal-21
ances and also to evaluate the potential gain attainable by more22
sophisticated schemes.23

Index Terms—Frequency recovery, OFDM, direct-conversion24
receiver, I/Q imbalance.25

I. INTRODUCTION26

I N RECENT years, the combination of OFDM with the27

direct-conversion receiver (DCR) concept has attracted28

considerable attention [1]. In contrast to the classical super-29

heterodyne architecture, in a DCR device the radio-frequency30

(RF) signal is down-converted to baseband without passing31

through any intermediate-frequency (IF) stage. On the one32

hand, this approach avoids the use of expensive image rejection33

filters and other off-chip components, with a remarkable advan-34

tage in terms of cost and circuit board size. On the other hand,35

a DCR front-end introduces some RF/analog imbalances aris-36

ing from the use of in-phase/quadrature (I/Q) low-pass filters37

(LPFs) with mismatched frequency responses, and from local38

oscillator (LO) signals with unequal amplitudes and imper-39

fect 90◦ phase difference. Overall, I/Q non-idealities give rise40

to conjugate mirror-image interference on the down-converted41

signal, which can seriously degrade the system performance.42

An OFDM receiver also exhibits a remarkable sensitivity to the43

carrier frequency offset (CFO) between the received waveform44
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and the LO signals, which originates interchannel interference 45

(ICI) at the output of the discrete Fourier transform (DFT) unit. 46

An intense research activity has been recently devoted to 47

the problem of CFO recovery in OFDM systems plagued by 48

frequency-selective I/Q imperfections. The methods presented 49

in [2] and [3] exploit a dedicated training preamble (TP) com- 50

posed of three repeated parts to retrieve the cosine of the 51

normalized CFO. However, since the cosine is an even func- 52

tion of its argument, the frequency estimates are affected by an 53

inherent sign ambiguity. In [4]–[6] the original preamble pro- 54

posed in [2] is extended by a second part which is rotated by 55

an artificial frequency shift before transmission. The resulting 56

TP allows one to recover both the cosine and the sine of the 57

CFO, which are eventually combined to get unambiguous esti- 58

mates of the frequency offset. A similar approach is adopted 59

in [7], where the sign ambiguity problem is fixed by rotating 60

the repeated parts of the TP by a specified phase pattern. Albeit 61

effective, all the aforementioned solutions cannot be applied to 62

practical OFDM systems since they rely on suitably designed 63

TPs that cannot be found in any commercial standard. 64

The schemes presented in [8]–[12] exploit the conven- 65

tional repeated TP of the IEEE 802.11a WLAN standard. 66

Specifically, in [8] the authors present a suitable matrix for- 67

mulation of the received signal samples to derive novel sine 68

and cosine-based CFO estimators, while the frequency-domain 69

correlations of the TP are used in [9]. An alternative cosine- 70

based estimator is derived in [10] using a general relation 71

among three arbitrary TP segments, while rotational invariance 72

techniques (ESPRIT) [13] are applied in [11]. Finally, an iter- 73

ative interference-cancellation approach is presented in [12] 74

by resorting to the space-alternating generalized expectation- 75

maximization (SAGE) algorithm [14]. 76

The common idea behind all the aforementioned schemes is 77

that conventional CFO estimators cannot work properly when 78

applied to a DCR architecture. However, so far only numeri- 79

cal measurements and heuristic arguments have been used to 80

support such an established belief, while any solid theoretical 81

analysis is still missing. This paper tries to fill such a gap by 82

providing a theoretical investigation of the CFO recovery prob- 83

lem in an OFDM receiver affected by frequency-selective I/Q 84

imbalance. In doing so, we adopt a maximum-likelihood (ML) 85

approach and consider a burst-mode transmission wherein each 86

frame is preceded by the conventional repeated TP. Our goal 87

is to provide answers to the following key questions: i) To 88

which extent can conventional CFO recovery schemes per- 89

form satisfactorily in the presence of RF imperfections? i i) 90

How do CFO recovery schemes devised for DCR architectures 91

0090-6778 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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compare with conventional methods that ignore the presence of92

I/Q imbalances? i i i) Is it possible to design more sophisticated93

algorithms to improve the accuracy of available methods? iv)94

Can such improved performance be achieved with a tolerable95

increase of the system complexity?96

In order to address question i), we begin our study by review-97

ing the classical ML (CML) frequency estimator presented in98

[15] and analytically assessing its accuracy in the presence of99

I/Q imbalances. This analysis, which is not available in the100

literature, is important for establishing the price (in terms of101

estimation accuracy) that must be paid when applying CML in102

an I/Q imbalance scenario. Next, we assess the theoretical per-103

formance of the algorithm presented in [7] for the joint ML104

(JML) estimation of the CFO, the channel-distorted TP and its105

mirror image. Such an analysis is not available in [7] and pro-106

vides an answer to question i i). As we shall see, JML is very107

sensitive to the magnitude of the CFO value and fails when-108

ever the CFO becomes vanishingly small. Motivated by such a109

result, we move to question i i i) and derive a novel ML-based110

estimator of all the unknown parameters which exploits some111

side information about the average signal-to-image ratio (SIR).112

Such an estimator can be interpreted as an extension of both113

CML and JML since the latter schemes are obtained from the114

former by simply adjusting a design parameter. Compared to115

CML and JML, the new estimator provides improved accuracy116

at the price of a certain increase of the computational load. The117

complexity analysis of CML, JML and CJML is eventually used118

to answer question iv). A last contribution is the derivation of119

the Cramer-Rao bound (CRB) for CFO recovery in the pres-120

ence of I/Q imbalance using the true noise statistics. This result121

can be used to check whether the approximated bound derived122

under the traditional white Gaussian noise (WGN) assumption123

deviates substantially or not from the true CRB.124

The rest of the paper is organized as follows. Next section125

illustrates the DCR architecture and introduces the signal126

model. In Sects III and IV we review the CML and JML,127

respectively, while the novel CFO estimator exploiting SIR128

information is derived in Sect. V. We provide the CRB analysis129

in Sect. VI and discuss simulation results in Sect. VII. Finally,130

some conclusions are drawn in Sect. VIII.131

Notation: Matrices and vectors are denoted by boldface let-132

ters, with IN and 0 being the identity matrix of order N and133

the null vector, respectively. A = diag{a(n); n = 1, 2, . . . , N }134

denotes an N × N diagonal matrix with entries a(n) along its135

main diagonal, while B−1 is the inverse of a square matrix B.136

We use E{·}, (·)∗, (·)T and (·)H for expectation, complex conju-137

gation, transposition and Hermitian transposition, respectively.138

The notation arg{·} stands for the argument of a complex-valued139

quantity, | · | represents the corresponding modulus, while the140

real and imaginary parts are expressed by Re(·) and Im(·),141

respectively. Finally, we denote by λ̃ a trial value of an unknown142

parameter λ.143

II. SIGNAL MODEL IN THE PRESENCE OF I/Q IMBALANCE144

A. Direct Conversion Receiver145

Fig. 1 illustrates the basic DCR architecture in the presence146

of I/Q imbalances. The latter originate from I/Q filters with147

Fig. 1. Basic architecture of a direct-conversion receiver.

mismatched impulse responses gI (t) and gQ(t), as well as from 148

LO signals with an amplitude imbalance α and a phase error

Q1

149

ψ . We call s(t) and v(t) the baseband representations of the 150

transmitted signal and propagation channel, respectively. Then, 151

denoting by r(t) the complex envelope of the received wave- 152

form rRF (t) with respect to the carrier frequency f0, we have 153

r(t) = s(t)⊗ v(t)+ n(t), with n(t) being circularly symmet- 154

ric AWGN with two-sided power spectral density 2N0. From 155

the analysis in [16], the down-converted baseband signal x(t) = 156

xI (t)+ j xQ(t) can be written as 157

x(t) = e j2π� f t [s(t)⊗ h(t)] + e− j2π� f t [s∗(t)⊗ q(t)] + w(t)
(1)

where � f = f0 − fL O is the offset between the carrier and 158

LO frequencies, while the impulse responses h(t) and q(t) are 159

defined as

Q2

160

h(t) = v(t)⊗
[

p+(t)e− j2π� f t
]

q(t) = v∗(t)⊗
[

p−(t)e j2π� f t
]

(2)

with p+(t) = 0.5 · [gI (t)+ αgQ(t)e− jψ ] and p−(t) = 0.5 · 161

[gI (t)− αgQ(t)e jψ ]. Finally, the noise term w(t) is related to 162

n(t) by 163

w(t) = n(t)e j2π� f t ⊗ p+(t)+ n∗(t)e− j2π� f t ⊗ p−(t). (3)

Letting w(t) = wI (t)+ jwQ(t), it follows that wI (t) and 164

wQ(t) are zero-mean Gaussian processes with auto- and cross- 165

correlation functions 166

E{wI (t)wI (t + τ)} = N0[gI (τ )⊗ gI (−τ)]
E{wQ(t)wQ(t + τ)} = α2 N0[gQ(τ )⊗ gQ(−τ)]
E{wI (t)wQ(t + τ)} = −αN0 sinψ[gI (τ )⊗ gQ(−τ)]. (4)

Inspection of (4) reveals that w(t) is not circularly sym- 167

metric as its real and imaginary components are generally 168

cross-correlated and have different auto-correlation functions. 169

B. Signal Model 170

The investigated system is an OFDM burst-mode transceiver 171

where each block has length T and is preceded by a cyclic pre- 172

fix (CP) to avoid interblock interference. We denote by N the 173

number of available subcarriers and by 1/T the subcarrier spac- 174

ing. As specified in [17], a TP is appended in front of each data 175
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frame to facilitate the synchronization task. In particular, we176

assume that the TP has a periodic structure in the time-domain177

and is composed by M ≥ 2 identical segments [18], [19]. The178

basic segment comprises P time-domain samples (with P being179

a power of two) and is generated by feeding a sequence of180

pilot symbols c = [c(0), c(1), . . . , c(P − 1)]T into a P−point181

inverse DFT unit. Hence, denoting by s(k) the kth sample of182

the TP, we have183

s(k) = 1√
P

P−1∑
n=0

c(n)e j2πnk/P − Ng ≤ k ≤ M P − 1 (5)

where Ng is the CP length normalized by the signaling period184

Ts = T/N .185

After propagating through a multipath channel, the received186

signal rRF (t) is down-converted to baseband and sampled with187

period Ts using the DCR architecture of Fig. 1. Then, sam-188

ples belonging to the TP are arranged into M vectors xm =189

[xm(0), xm(1), . . . , xm(P − 1)]T (m = 0, 1, . . . ,M − 1), each190

of them having length P and corresponding to a specific TP191

segment. According to (1), the pth entry of xm can be written as192

xm(p) = e j[m−(M−1)/2]ϕa(p)+ e− j[m−(M−1)/2]ϕb(p)

+ wm(p) (6)

where wm(p) is the noise contribution and we have defined193

ϕ = 2πν

Q
(7)

with Q = N/P and ν � � f · T being the CFO normalized by194

the subcarrier spacing. Furthermore, a(p) and b(p) are given by195

a(p) = e j (M−1)ϕ/2e j2πνp/N [s(t)⊗ h(t)]t=pTs (8)

b(p) = e− j (M−1)ϕ/2e− j2πνp/N [s∗(t)⊗ q(t)]t=pTs (9)

where196

s(t) = 1√
P

P−1∑
n=0

c(n)e j2πnQt/T (10)

is the transmitted TP. In writing (8) and (9), we have borne197

in mind that [s(t)⊗ h(t)]t=pTs and [s∗(t)⊗ q(t)]t=pTs are198

periodic in p of period P due to the repetitive TP structure.199

To proceed further, we consider the following200

M−dimensional vectors201

x(p) = [x0(p), x1(p), . . . , xM−1(p)]
T p = 0, 1, . . . , P − 1

(11)

where x(p) is obtained by collecting the pth entry of {xm}M−1
m=0 .202

Hence, from (6) we get203

x(p) = u(ϕ)a(p)+ u(−ϕ)b(p)+ w(p) (12)

where w(p) = [w0(p), w1(p), . . . , wM−1(p)]T is a zero-mean204

Gaussian vector and205

u(ϕ) = e− j (M−1)ϕ/2
[
1, e jϕ, e j2ϕ, . . . , e j (M−1)ϕ

]T
. (13)

Inspection of (12) and (13) reveals that x(p) consists of 206

two spectral lines u(ϕ) and u(−ϕ), symmetrically positioned 207

around the origin and accounting for the direct signal and its 208

mirror image, respectively. In the ensuing discussion, we inves- 209

tigate the ML estimation of the normalized CFO ϕ in the 210

presence of the nuisance vectors a =[a(0), a(1), . . . , a(P − 211

1)]T and b =[b(0), b(1), . . . , b(P − 1)]T . In particular, we 212

begin by reviewing the CML estimator presented in [15], which 213

assumes b = 0, and evaluate its performance in the presence of 214

I/Q imbalance. Next, we assess the accuracy of the JML algo- 215

rithm proposed in [7], which jointly estimates (ϕ, a,b) without 216

exploiting any side information about b. Such theoretical analy- 217

sis will be used to compare the accuracy of CML and JML in the 218

presence of I/Q imbalance. Since the signal component is typ- 219

ically much stronger than its mirror image (i.e., ‖a‖ 	 ‖b‖), a 220

novel ML estimator of (ϕ, a,b) is eventually derived by putting 221

a constraint on the ratio ‖a‖2/‖b‖2. 222

To make the analysis mathematically tractable, we model the 223

noise term w(t) as a zero-mean circularly-symmetric Gaussian 224

(ZMCSG) complex random process. This amounts to say- 225

ing that {w(p); p = 0, 1, . . . , P − 1} are statistically indepen- 226

dent ZMCSG vectors with covariance matrix Kw = σ 2
wIM . 227

Although this assumption holds true only in the case of a per- 228

fectly balanced DCR scheme, it has been largely adopted in the 229

literature even in the presence of non-negligible RF imperfec- 230

tions [20]. In this work, the white noise assumption is employed 231

only to derive the frequency estimation algorithms and for their 232

performance analysis, while the true noise statistics shown in 233

(4) are used in the numerical simulations and for the CRB 234

evaluation. 235

III. CFO ESTIMATION IN THE ABSENCE OF I/Q 236

IMBALANCE 237

A. Estimator’s Design 238

The CML is proposed in [15] for an OFDM receiver free 239

from any RF imperfection. This scheme performs the joint ML 240

estimation of (ϕ, a) based on the following signal model 241

x(p) = u(ϕ)a(p)+ w(p) p = 0, 1, . . . , P − 1. (14)

The log-likelihood function (LLF) is expressed by [21] 242

�(ϕ̃, ã) = −N ln(πσ 2
w)− 1

σ 2
w

P−1∑
p=0

‖x(p)− u(ϕ̃)ã(p)‖2

(15)

and its maximization with respect to (ϕ̃, ã) leads to the follow- 243

ing CFO estimate 244

ϕ̂C M L = arg max
ϕ̃∈[−π,π)

{�C M L(ϕ̃)} (16)

where 245

�C M L(ϕ̃) =
P−1∑
p=0

∣∣∣uH (ϕ̃)x(p)
∣∣∣2
. (17)
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Taking (11) and (13) into account, we may put the metric246

�C M L(ϕ̃) in the equivalent form247

�C M L(ϕ̃) =
M−1∑
m=0

M−1∑
k=0

Re
{
χC M L ,m,k(ϕ̃)xH

m xk

}
(18)

with χC M L ,m,k(ϕ̃) = e j (m−k)ϕ̃ .248

B. Performance Analysis249

Since the CML is derived under the simplifying assumption250

b = 0, it is interesting to assess its accuracy in the presence of251

I/Q imbalance. For this purpose, we define the estimation error252

as εC M L = ϕ − ϕ̂C M L , and we analyse the CML performance253

assuming relatively small values of εC M L . Hence, following the254

approach outlined in [22], we get255

E{εC M L } � −E{� ′
C M L(ϕ)}

E{� ′′
C M L(ϕ)}

(19)

E
{
ε2

C M L

}
� E{[� ′

C M L(ϕ)]
2}

[E{� ′′
C M L(ϕ)}]2

(20)

where � ′
C M L(ϕ) and � ′′

C M L(ϕ) are the first and second order256

derivatives of �C M L(ϕ̃), respectively, evaluated at ϕ̃ = ϕ. In257

Appendix A it is shown that258

E{εC M L} = 6

M2 − 1
· q ′

M (ϕ)[Re(aH b)+ qM (ϕ)‖b‖2]

�M (ϕ)
(21)

with259

qM (ϕ) = sin(Mϕ)

M sinϕ
(22)

and260

�M (ϕ) = ‖a‖2 + [qM (ϕ)− γM (ϕ)]Re(aH b)

− [βM (ϕ)+ qM (ϕ)γM (ϕ)]‖b‖2. (23)

In the above equation, the quantities βM (ϕ) and γM (ϕ) are261

expressed by262

βM (ϕ) = 3

M2 − 1
[q ′

M (ϕ)]
2 and γM (ϕ) = 3

M2 − 1
q ′′

M (ϕ)

(24)

where q ′
M (ϕ) and q ′′

M (ϕ) are the first and second order deriva-263

tives of qM (ϕ), respectively. From (21)–(23) we see that ϕ̂C M L264

is a biased estimate of ϕ. The only exceptions occur in the265

absence of I/Q imbalance or when ϕ = 0, since in the latter266

case we have q ′
M (ϕ) = 0.267

In Appendix A we also evaluate the mean square estimation268

error (MSEE) of ϕ̂C M L , which is found to be269

E
{
ε2

C M L

}
= E2{εC M L } + 6σ 2

w

M(M2 − 1)
· AM (ϕ)

�2
M (ϕ)

+ 6Pσ 4
w

M2(M2 − 1)
· 1

�2
M (ϕ)

(25)

with270

AM (ϕ) = ‖a‖2 + 2qM (ϕ)Re(aH b)+ [βM (ϕ)+ q2
M (ϕ)]‖b‖2.

(26)

C. Remarks 271

i) Observing that qM (0) = 1, βM (0) = 0 and γM (0) = 272

−1, for ϕ = 0 we get AM (0) = �M (0) = ‖a + b‖2 and (25) 273

reduces to 274

E
{
ε2

C M L

}∣∣∣
ϕ=0

= 6σ 2
w

M(M2 − 1)‖a + b‖2

[
1 + Pσ 2

w

M‖a + b‖2

]
.

(27)

ii) In the absence of I/Q imbalance we have AM (ϕ) = 275

�M (ϕ) = ‖a‖2. In such a case, (25) becomes independent of 276

ϕ and takes the form 277

E
{
ε2

C M L

}∣∣∣
b=0

= 6σ 2
w

M(M2 − 1)‖a‖2

(
1 + Pσ 2

w

M‖a‖2

)
(28)

which further simplifies to 278

E
{
ε2

C M L

}∣∣∣
b=0,‖a‖2/σ 2

w→∞ = 6σ 2
w

M(M2 − 1)‖a‖2
(29)

at relatively high SNR values (i.e., for ‖a‖2/σ 2
w → ∞). It is 279

worth noting that the right-hand side of (29) is the CRB for 280

CFO estimation reported in [15]. This means that CML is 281

asymptotically efficient when b = 0. 282

IV. JOINT ML ESTIMATION OF THE UNKNOWN 283

PARAMETERS 284

A. Estimator’s Design 285

In this section we review the JML presented in [7], which 286

aims at jointly estimating the unknown parameters (ϕ, a,b). 287

After rewriting (12) as 288

x(p) = A2(ϕ)θ(p)+ w(p) p = 0, 1, . . . , P − 1 (30)

with A2(ϕ) = [u(ϕ)u(−ϕ)] and θ(p) = [a(p), b(p)]T , the 289

LLF takes the form 290

�2(ϕ̃, θ̃) = −N ln(πσ 2
w)− 1

σ 2
w

P−1∑
p=0

∥∥∥x(p)− A2(ϕ̃)θ̃(p)
∥∥∥2

(31)

where θ̃(p) � [ã(p), b̃(p)]T and θ̃ = {θ̃(0), θ̃(1), . . . , 291

θ̃(P − 1)}. The maximum of the LLF with respect to θ̃(p) is 292

attained at 293

θ̂(p; ϕ̃) = [AH
2 (ϕ̃)A2(ϕ̃)]

−1AH
2 (ϕ̃)x(p) (32)

which is next substituted into (31) in place of θ̃(p), yielding the 294

concentrated likelihood function 295

�2(ϕ̃) = −N ln(πσ 2
w)− 1

σ 2
w

P−1∑
p=0

xH (p)[IM − C2(ϕ̃)]x(p)

(33)

with C2(ϕ̃) = A2(ϕ̃)[AH
2 (ϕ̃)A2(ϕ̃)]−1AH

2 (ϕ̃). The ML esti- 296

mate of ϕ is eventually given by 297

ϕ̂J M L = arg max
ϕ̃∈[−π,π)

{�J M L(ϕ̃)} (34)
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where298

�J M L(ϕ̃) = M
P−1∑
p=0

xH (p)C2(ϕ̃)x(p). (35)

After some manipulations, it is found that the metric �J M L(ϕ̃)299

can also be written as300

�J M L(ϕ̃) =
M−1∑
m=0

M−1∑
k=0

Re
{
χJ M L ,m,k(ϕ̃)xH

m xk

}
(36)

where301

χJ M L ,m,k(ϕ̃)

= cos[(m − k)ϕ̃] − qM (ϕ̃) cos[(m + k − M + 1)ϕ̃]

1 − q2
M (ϕ̃)

(37)

and qM (ϕ̃) is defined in (22).302

It is worth noting that letting M = 2 yields C2(ϕ̃) = I2,303

which makes �J M L(ϕ̃) independent of ϕ̃. This amounts to304

saying that application of JML is possible only for M ≥ 3.305

Furthermore, since �J M L(ϕ̃) is an even function of ϕ̃, it306

exhibits two global maxima symmetrically positioned around307

ϕ̃ = 0. This results into an ambiguity in the sign of ϕ̂J M L308

which cannot be removed unless additional information is avail-309

able. One possible solution relies on the fact that the useful310

signal component is typically much stronger than its mirror311

image. Hence, we suggest to consider the positive solution of312

(34), say ϕ̂+
J M L , and compute the estimates â and b̂ from (32)313

after replacing ϕ̃ with ϕ̂+
J M L . Then, we set ϕ̂J M L = ϕ̂+

J M L if314

‖â‖ > ‖b̂‖, otherwise we choose ϕ̂J M L = −ϕ̂+
J M L .315

B. Performance Analysis316

The accuracy of ϕ̂J M L is assessed by applying the same317

methods used for ϕ̂C M L . Skipping the details, it is found318

that E{ϕ̂J M L} = ϕ, thereby indicating that JML is unbiased.319

Furthermore, denoting by εJ M L = ϕ − ϕ̂J M L the estimation320

error, the MSEE turns out to be321

E
{
ε2

J M L

}
= 6σ 2

w

[
M(M2 − 1)

]−1[
�M,1(ϕ)

(‖a‖2 + ‖b‖2) + 2�M,2(ϕ)Re(aH b)
]

+ 12Pσ 4
w�M,3(ϕ)

[
M2(M2 − 1)

]−1[
�M,1(ϕ)

(‖a‖2 + ‖b‖2) + 2�M,2(ϕ)Re(aH b)
]2

(38)

where322

�M,1(ϕ) = 1 − βM (ϕ)

1 − q2
M (ϕ)

(39)

�M,2(ϕ) = γM (ϕ)+ βM (ϕ)qM (ϕ)

1 − q2
M (ϕ)

(40)

and323

�M,3(ϕ) = 1

1 − q2
M (ϕ)

[
�M,1(ϕ)− qM (ϕ)�M,2(ϕ)

]
(41)

with βM (ϕ) and γM (ϕ) defined as in (24).324

C. Remarks 325

i) For M = 2 we have �M,1(ϕ) = �M,2(ϕ) = 0 and the 326

denominator in (38) vanishes. Such a result confirms that ϕ 327

cannot be estimated when M < 3. 328

ii) Using the fourth-order Maclaurin series of qM (ϕ) 329

qM (ϕ) � 1 − M2 − 1

6
ϕ2 + (M2 − 1)(3M2 − 7)

360
ϕ4 (42)

it is found that, for small values of ϕ, functions �M,i (ϕ) (i = 330

1, 2) can be approximated as 331

�M,i (ϕ) � M2 − 4

15
ϕ2 i = 1, 2 (43)

while �M,3(ϕ) � �M,1(ϕ)/2. Substituting these results into 332

(38) produces 333

E
{
ε2

J M L

}∣∣∣
ϕ→0

� 90σ 2
w

M(M2 − 1)(M2 − 4) ‖a + b‖2(
1 + Pσ 2

w

M ‖a + b‖2

)
· 1

ϕ2
(44)

which indicates that the accuracy of JML rapidly degrades as 334

ϕ approaches zero. The reason is that the two spectral lines in 335

(12) collapse into a single dc component when ϕ = 0, thereby 336

preventing the joint estimation of a and b. 337

iii) In the absence of any I/Q imbalance we have b = 0 and 338

(38) takes the form 339

E
{
ε2

J M L

}∣∣∣
b=0

= 6σ 2
w

M(M2 − 1) ‖a‖2
· 1

�M,1(ϕ)

+ 12Pσ 4
w

M2(M2 − 1) ‖a‖4
· �M,3(ϕ)

�2
M,1(ϕ)

(45)

which, at relatively high SNR values, reduces to 340

E
{
ε2

J M L

}∣∣∣
b=0,‖a‖2/σ 2

w→∞ = 6σ 2
w

M(M2 − 1) ‖a‖2
· 1

�M,1(ϕ)
.

(46)

Comparing (29) with (46) and recalling that 0 ≤ �M,1(ϕ) ≤ 1, 341

it turns out that CML outperforms (at least asymptotically) JML 342

when applied to an ideal receiver with no I/Q imbalance. This 343

result is not surprising since, in the considered scenario, ϕ̂C M L 344

is the ML estimate of ϕ. 345

V. CONSTRAINED JOINT ML ESTIMATION OF THE 346

UNKNOWN PARAMETERS 347

A. Estimator’s Design 348

JML is derived without considering the fact that in a practical 349

situation we have ‖a‖ 	 ‖b‖. We now illustrate how such a 350

side information can be exploited to improve the performance 351

of JML. Our approach aims at maximizing (31) subject to a 352

constraint on the SIR. The resulting scheme is referred to as the 353

constrained JML (CJML) and solves the problem 354

min
ϕ̃,θ̃

P−1∑
p=0

∥∥∥x(p)− A2(ϕ̃)θ̃(p)
∥∥∥2

s.t. ‖b̃‖2 ≤ δ‖ã‖2

(47)



IE
EE

Pr
oo

f

6 IEEE TRANSACTIONS ON COMMUNICATIONS

where δ > 0 is a design parameter. In Appendix B it is shown355

that CJML takes the form356

ϕ̂C J M L = arg max
ϕ̃∈[−π,π)

{�C J M L(ϕ̃)} (48)

where the metric �C J M L(ϕ̃) is found to be357

�C J M L(ϕ̃) =
M−1∑
m=0

M−1∑
k=0

χC J M L ,m,k(ϕ̃)xH
m xk (49)

with358

χC J M L ,m,k(ϕ̃) =
{

2ζ1(ϕ̃)− M[ζ 2
1 (ϕ̃)− 2qM (ϕ̃)ζ1(ϕ̃)ζ2(ϕ̃)

+ζ 2
2 (ϕ̃)]

}
e j (m−k)ϕ̃ +

{
2ζ3(ϕ̃)− M[ζ 2

3 (ϕ̃)

−2qM (ϕ̃)ζ2(ϕ̃)ζ3(ϕ̃)+ ζ 2
2 (ϕ̃)]

}
e− j (m−k)ϕ̃

+ 2
{

M[ζ1(ϕ̃)+ ζ3(ϕ̃)]ζ2(ϕ̃)− MqM (ϕ̃)[ζ1(ϕ̃)ζ3(ϕ̃)

+ζ 2
2 (ϕ̃)]M[ζ1(ϕ̃)] − 2ζ2(ϕ̃)

}
cos[(m + k − M + 1)ϕ̃]

(50)

In the above equation, functions ζ1(ϕ̃), ζ2(ϕ̃) and ζ3(ϕ̃) depend359

on δ and are expressed by360

ζ1(ϕ̃) = [M + λ(ϕ̃)]/D(ϕ̃) (51)

ζ2(ϕ̃) = MqM (ϕ̃)/D(ϕ̃) (52)

ζ3(ϕ̃) = [M − δλ(ϕ̃)]/D(ϕ̃) (53)

with D(ϕ̃) = [M + λ(ϕ̃)][M − δλ(ϕ̃)] − M2q2
M (ϕ̃) and361

λ(ϕ̃) = max

⎛
⎝0,

ϒ2(ϕ̃)−
√
ϒ2

2 (ϕ̃)− ϒ1(ϕ̃)ϒ3(ϕ̃)

ϒ1(ϕ̃)

⎞
⎠ . (54)

Furthermore, we have362

ϒ1(ϕ̃) = δ
(
δ‖t2(ϕ̃)‖2 − ‖t1(ϕ̃)‖2

)
(55)

ϒ2(ϕ̃) = Mδ
[
‖t1(ϕ̃)‖2 + ‖t2(ϕ̃)‖2

−2qM (ϕ̃)Re{tH
1 (ϕ̃)t2(ϕ̃)}

]
(56)

ϒ3(ϕ̃) = M2
{[

q2
M (ϕ̃)− δ

]
‖t1(ϕ̃)‖2

− 2qM (ϕ̃)(1 − δ)Re{tH
1 (ϕ̃)t2(ϕ̃)}

+[1 − δ q2
M (ϕ̃)]‖t2(ϕ̃)‖2

}
(57)

where t1 and t2 are P-dimensional vectors with entries363

[t1(ϕ̃)]p = uH (ϕ̃)x(p) and [t2(ϕ̃)]p = uH (−ϕ̃)x(p) for p =364

0, 1, . . . , P − 1.365

Since evaluating the theoretical performance of CJML is366

extremely challenging, the accuracy of this scheme will be367

assessed in Sect. VII by means of numerical simulations.368

B. Remarks369

i) When δ approaches zero, we have limδ→0 λ(ϕ̃) = +∞ and370

limδ→0 δλ(ϕ̃) = 0. Hence, from (51)–(53) it is found that ζ1(ϕ̃)371

approaches 1/M , while ζ2(ϕ̃) and ζ3(ϕ̃) become vanishingly 372

small. This leads to 373

lim
δ→0

χC J M L ,m,k(ϕ̃) = 1

M
e j (m−k)ϕ̃ = 1

M
χC M L ,m,k(ϕ̃) (58)

which means that CJML reduces to CML. The reason is that 374

letting δ = 0 in the constraint ‖b‖2 ≤ δ‖a‖2 amounts to putting 375

b = 0, which is just the underlying assumption of CML. 376

ii) When δ goes to infinity, we have limδ→+∞ λ(ϕ̃) = 377

limδ→+∞ δλ(ϕ̃) = 0, leading to 378

lim
δ→+∞ ζ1(ϕ̃) = lim

δ→+∞ ζ3(ϕ̃) = 1

M[1 − q2
M (ϕ̃)]

lim
δ→+∞ ζ2(ϕ̃) = qM (ϕ̃)

M[1 − q2
M (ϕ̃)]

. (59)

In such a case it is found that 379

lim
δ→+∞χC J M L ,m,k(ϕ̃)

= 2

M
· cos[(m − k)ϕ̃] − qM (ϕ̃) cos[(m + k − M + 1)ϕ̃]

1 − q2
M (ϕ̃)

(60)

which, compared with (37), reveals that CJML reduces to JML. 380

This fact can be explained by observing that letting δ → +∞ 381

amounts to removing any constraint on the magnitude of b. 382

The above remarks qualify CJML as a general ML-based 383

estimator, which incorporates both CML and JML as special 384

cases when δ → 0 and δ → +∞, respectively. 385

VI. COMPUTATIONAL COMPLEXITY OF CML, JML, AND 386

CJML 387

A. CML Algorithm 388

In this section we assess the complexity of the investigated 389

schemes in terms of real multiplications (RMs) and real addi- 390

tions (RAs). For this purpose, we observe that a complex 391

multiplication is equivalent to four RMs plus two RAs, while 392

a complex addition involves two RAs. 393

We start by rewriting (17) in the form

�C M L(ϕ̃) = ‖t1(ϕ̃)‖2

where [t1(ϕ̃)]p = uH (ϕ̃)x(p), for p = 0, 1, . . . , P − 1. Since 394

the computation of [t1(ϕ̃)]p requires M complex multiplica- 395

tions and M − 1 complex additions, evaluating t1(ϕ̃) needs 396

4P M RMs and 4P M − 2P RAs. Additional 2P RMs and 397

2P − 1 RAs are required to obtain ‖t1(ϕ̃)‖2, so that comput- 398

ing �C M L(ϕ̃) for each ϕ̃ needs 4P M + 2P RMs and 4P M − 399

1 RAs. 400

B. JML Algorithm 401

The complexity of JML is assessed by reformulating (35) as 402

�J M L(ϕ̃) = 1

1 − q2
M (ϕ̃)

[
‖t1(ϕ̃)‖2 + ‖t2(ϕ̃)‖2

−2qM (ϕ̃)Re{tH
1 (ϕ̃)t2(ϕ̃)}

]
(61)
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TABLE I
COMPLEXITY OF THE INVESTIGATED SCHEMES

where [t2(ϕ̃)]p = uH (−ϕ̃)x(p) for p = 0, 1, . . . , P − 1.403

Based on the results obtained for the CML algorithm, it is404

shown that the computation of a single value of �J M L(ϕ̃)405

requires 8P M + 6P + 4 RMs plus 8P M + 2P RAs.406

C. CJML Algorithm407

We first observe that, once t1(ϕ̃) and t2(ϕ̃) have been com-408

puted, evaluating ϒ1(ϕ̃), ϒ2(ϕ̃), and ϒ3(ϕ̃) through (55)–(57)409

requires additional 6P + 14 RMs and 6P + 5 RAs. Also, given410

ϒ1(ϕ̃), ϒ2(ϕ̃), and ϒ3(ϕ̃), the computation of λ(ϕ̃) through411

(54) involves 4 RMs and 2 RAs. Considering the calculation412

of t1(ϕ̃) and t2(ϕ̃), we conclude that computing λ(ϕ̃) requires a413

total of 8P M + 6P + 18 RMs and 8P M + 2P + 7 RAs.414

Now, we focus on the computation of �C J M L(ϕ̃) through415

(85) which, after neglecting irrelevant terms independent of ϕ̃,416

is equivalent to417

�C J M L(ϕ̃) = M
∥∥â

∥∥2 + M‖b̂‖2 − 2Re{âH t1(ϕ̃)}
− 2Re{b̂H t2(ϕ̃)} + 2MqM (ϕ)Re{b̂H â}. (62)

Assuming that λ(ϕ̃), and hence uH (ϕ̃)x(p) = [t1(ϕ̃)]p and418

uH (−ϕ̃)x(p) = [t2(ϕ̃)]p, are available, the calculation of â and419

b̂ through (84a)–(84b) requires a total of 13P RMs and 7P420

RAs. Additional 2P RMs and 2P − 1 RAs are required for421

the computation of each quantity
∥∥â

∥∥2, ‖b̂‖2, Re{âH t1(ϕ̃)},422

Re{b̂H t2(ϕ̃)} and Re{b̂H â}, while 4 additional RMs and 4 RAs423

are needed for evaluating the right-hand side of (62). It can424

be concluded that the computation of �C J M L(ϕ̃) for each ϕ̃425

requires a total of 8P M + 29P + 22 RMs and 8P M + 19P +426

6 RAs.427

Table I summarizes the number of real operations involved428

in the computation of �C M L(ϕ̃), �J M L(ϕ̃), and �C J M L(ϕ̃)429

as a function of M and P . The rightmost column reports430

the overall complexity required in a WLAN scenario, where431

the useful part of the TP (excluding the CP) is composed by432

M = 8 repeated segments carrying P = 16 samples. These fig-433

ures indicate that CJML is computationally more demanding434

than CML and JML, since it leads to an increase of the system435

complexity by a factor 2.8 and 1.3, respectively.436

VII. CRB ANALYSIS437

It is interesting to compare the performance of the estimation438

algorithms illustrated in the previous section with the relevant439

CRB. The latter is computed from (30) using the true statis-440

tical distribution of wI (t) and wQ(t) as given in (4). For this441

purpose, we arrange the samples xm(p) = x I
m(p)+ j x Q

m (p)442

into a real-valued vector x = [x I
0 (0), x Q

0 (0), x I
0 (1), x Q

0 (1) . . .443

x I
M−1(P − 1), x Q

M−1(P − 1)]T with 2P M entries. Then, from 444

(6) we can write 445

x = η + w (63)

where w = [w I
0(0), w

Q
0 (0), w

I
0(1), w

Q
0 (1) · · ·w I

M−1(P − 446

1), wQ
M−1(P − 1)]T is the noise contribution, with w I

m(p) 447

and w
Q
m (p) being the real and imaginary parts of wm(p), 448

respectively. Furthermore, letting a(p) = aI (p)+ jaQ(p) and 449

b(p) = bI (p)+ jbQ(p), we have 450

η = Qz (64)

with z = [zT (0) zT (1) · · · zT (P − 1)]T and z(p) = 451

[aI (p), aQ(p), bI (p), bQ(p)]T , while Q is a matrix of 452

dimension 2P M × 4P with the following structure 453

Q = [
QT

0 QT
1 · · · QT

M−1

]T
. (65)

In the above equation, Qm is a 2P × 4P matrix 454

Qm = diag{Rm,Rm, . . . ,Rm︸ ︷︷ ︸
P

} m = 0, 1, . . . ,M − 1

(66)

where Rm is defined as 455

Rm =
[

cm(ϕ) −sm(ϕ) cm(ϕ) sm(ϕ)

sm(ϕ) cm(ϕ) −sm(ϕ) cm(ϕ)

]
(67)

with cm(ϕ) and sm(ϕ) being a shorthand notation for cos[(m − 456
M−1

2 )ϕ] and sin[(m − M−1
2 )ϕ], respectively. For notational 457

simplicity, in (65) we have omitted the dependence of Q on ϕ. 458

In Appendix C it is shown that 459

CRB(ϕ) = 1

zT Q̇T

[
C−1
w − C−1

w Q
(

QT C−1
w Q

)−1
QT C−1

w

]
Q̇z

(68)

where Cw is the correlation matrix of w and Q̇ is the derivative 460

of Q with respect to ϕ. A simpler expression is obtained by 461

assuming a white-noise scenario wherein Cw = (σ 2
w/2)I2P M . 462

In such a case, after lengthy computations it is found that (68) 463

takes the form 464

CRB(ϕ) = 6σ 2
w

[
M(M2 − 1)

]−1[
�M,1(ϕ)

(‖a‖2 + ‖b‖2) + 2�M,2(ϕ)Re(aH b)
]

(69)

with �M,1(ϕ) and �M,2(ϕ) defined as in (39) and (40). It is 465

worth noting that, at relatively high SNR values, the accuracy 466

of ϕ̂J M L given in (38) approaches the CRB in (69), meaning 467

that JML is asymptotically efficient in the presence of AWGN. 468

VIII. SIMULATION RESULTS 469

A. Simulation Model 470

The investigated system is compliant with the IEEE 802.11a 471

standard for WLANs [17]. Specifically, the DFT size is N = 64 472
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with a signaling interval Ts = 50 ns which corresponds to a473

subcarrier distance of 312.5 kHz. The TP is composed by474

ten repeated segments of length P = 16. By considering the475

first two segments as the CP of the TP, the remaining M = 8476

segments are exploited for CFO recovery. We adopt a discrete-477

time channel model and collect the Ts-spaced samples of v(t)478

into a vector v = [v(0), v(1), . . . , v(Lv − 1)]T . The entries of479

v are independent and circularly symmetric Gaussian random480

variables with zero-mean and power481

E{|v(k)|2} = σ 2
v exp(−k/Lv) k = 0, 1, . . . , Lv − 1

(70)

where σ 2
v is chosen such that E{‖v‖2} = 1. Unless otherwise482

specified, we consider the following two scenarios [7]:483

1) Frequency-Selective I/Q Imbalance (FS-I/Q): the ana-484

log I/Q filters have discrete-time impulse responses gI =485

[0, 1, μ]T and gQ = [μ, 1, 0]T with μ = 0.1, while the LO-486

induced imbalance is characterized by α = 1.122 (1 dB) and487

ψ = 5 degrees. From (2), it follows that h(k) and q(k) have488

support k = 0, 1, . . . , L − 1, with L = Lv + 2.489

2) Frequency-Flat I/Q Imbalance (FF-I/Q): only fre-490

quency independent imbalance is considered with α = 1.122491

and ψ = 5◦, while the I/Q filters have ideal response [0, 1, 0]T .492

In order to assess the sensitivity of the considered schemes493

to the amount of RF imperfections, we also consider a general494

set-up wherein a coefficient ρ ∈ [0, 4] is used to specify the495

I/Q imbalance parameters as μ = 0.1ρ, α = 1 + 0.122ρ and496

ψ = 5ρ degrees. Clearly, ρ = 0 corresponds to the absence of497

any I/Q imbalance, while ρ = 1 yields the FS-I/Q scenario.498

The average SIR is defined in [7] and can expressed as499

SIR = (1 + α2)(1 + μ2)+ 2α cosψ

(1 + α2)(1 + μ2)− 2α cosψ
(71)

yielding the values of 19.9 dB and 22.8 dB for the FS-I/Q and500

FF-I/Q cases, respectively.501

Assuming a carrier frequency of 5 GHz and an oscillator502

instability of ±30 parts-per-million (ppm), the maximum value503

of the normalized CFO is approximately given by νmax = 0.5.504

Hence, recalling that Q = N/P = 4, from (7) it follows that505

ϕ ∈ [−π/4, π/4]. The global maximum of the CFO metrics506

shown in (18), (36) and (49) is found by evaluating the met-507

ric over a grid of K uniformly-spaced values ϕ̃k = −π/4 +508

kπ/(2K ) for k = 0, 1, . . . , K (coarse search), followed by a509

parabolic interpolation (fine search). Parameter K has been set510

to 128 since no significant improvement is achieved when using511

K > 128.512

B. Performance Assessment for FO Estimation513

An important design parameter for CJML is the coefficient δ,514

which specifies the constraint on the SIR level. Fig. 2 shows the515

accuracy of CJML as a function of δ for different SNR values516

and with ϕ uniformly distributed over the range [−π/4, π/4].517

These results are obtained in the FS-I/Q scenario, and are qual-518

itatively similar to those pertaining to the FF-I/Q case (not519

shown for space limitations). As is seen, at intermediate and520

low SNR values the MSEE monotonically increases with δ,521

Fig. 2. Accuracy of CJML vs δ for different SNR values in the FS-I/Q scenario.

Fig. 3. Accuracy of the CFO estimators vs ρ with SNR = 15 dB.

while at high SNR values a global minimum occurs around 522

δ = −22 dB. Extensive numerical measurements carried out in 523

the general set-up with ρ ∈ [0, 4] indicate that nearly optimal 524

performance can be achieved by letting δ = (SIR)−1, which is 525

therefore used in all subsequent simulations. 526

Figs. 3 and 4 illustrate the MSEE of the CFO estimators as 527

a function of ρ with ϕ uniformly distributed over [−π/4, π/4]. 528

The SNR is 15 dB in Fig. 3 and 30 dB in Fig. 4. The solid 529

line illustrates theoretical analysis for CML, while for JML and 530

CJML it is used to facilitate the reading of the plot. It turns out 531

that the accuracy of JML is virtually independent of ρ, while 532

CML exhibits a remarkable sensitivity to the amount of I/Q 533

imbalances. However, at SNR = 15 dB the CML outperforms 534

JML for all the considered values of ρ, while at SNR = 30 dB 535

CML is worse than JML only for ρ > 1.9. These results indi- 536

cate that, contrary to the well-established belief, CML performs 537

satisfactorily in most practical situations and the adoption of 538

more sophisticated schemes is justified only at high SNR val- 539

ues and in the presence of extremely severe RF imbalances. We 540

also see that, in the presence of non-negligible I/Q imbalances, 541

the best accuracy is achieved by CJML. The reason is that this 542

scheme is able to find a good balance between CML and JML 543

thanks to a proper design of δ. In particular, for ρ = 0 we have 544

δ = 0 and CJML reduces to CML, while for large values of ρ it 545

departs from CML and approaches JML. 546

Fig. 5 illustrates the MSEE of the CFO estimators as a func- 547

tion of ϕ measured at SNR = 15 dB in the FS-I/Q scenario. 548
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Fig. 4. Accuracy of the CFO estimators vs ρ with SNR = 30 dB.

Fig. 5. Accuracy of the CFO estimators vs ϕ in the FS-I/Q scenario with SNR
= 15 dB.

The CRB reported in (69) is also shown for comparison. As549

expected, JML performs poorly for small CFO values since550

in this case the useful signal component and its mirror image551

collapse into a single dc line and cannot be easily resolved.552

This is also reflected in the CRB curve, which goes to infin-553

ity as ϕ approaches zero. In contrast, the accuracy of both CML554

and JCML depends weakly on the CFO value and is remark-555

ably better than that of JML for |ϕ| < 0.1π . Since CML is556

derived by ignoring the presence of I/Q imbalances, the fact that557

this scheme outperforms JML may appear surprising. Actually,558

such a behaviour can be explained by observing that for ϕ = 0559

the received signal in (12) reduces to a dc line embedded in560

(approximately) white Gaussian noise and, due to the absence561

of any mirror interference, CML provides nearly optimum per-562

formance. On the other hand, in this scenario JML cannot work563

properly due to the impossibility of providing independent esti-564

mates of the nuisance vectors a and b. It is worth noting that the565

theoretical analysis of CML and JML is in good agreement with566

simulation results except when we consider JML at small CFO567

values. Such a discrepancy is due to the fact that the MSEE568

shown in (38) is derived using the approach of [22], which is569

valid in the presence of small estimation errors. It is also worth570

recalling that no tangible difference has been observed between571

the true CRB (68) and its approximation (69), meaning that the572

noise term w(t) in (3) can reasonably be approximated as a573

circularly symmetric wihite Gaussian process.574

Fig. 6. Accuracy of the CFO estimators vs ϕ in the FS-I/Q scenario with SNR
= 30 dB.

Fig. 7. Bias of the CFO estimates ϕ in the FS-I/Q scenario with SNR = 30 dB.

The results shown in Fig. 6 are obtained under the same oper- 575

ating conditions of Fig. 5, except that the SNR is now set to 576

30 dB. In this case, we see that CML outperforms JML only 577

when |ϕ| is approximately smaller than 0.05π . Such behaviour 578

is justified by the fact that, at large SNR values, the MSEE 579

of JML becomes proportional to (SNR)−1, while the accuracy 580

of CML is essentially determined by the bias term E2{εC M L} 581

present in (25), which vanishes only for specific values of ϕ. 582

The CJML provides better estimates than CML except in the 583

proximity of ϕ = 0. Compared to JML, it performs slightly 584

worse when |ϕ| > 0.05π , while a significant improvement is 585

observed at smaller CFO values. 586

Fig. 7 illustrates the bias of the investigates schemes as a 587

function of ϕ in the FS-I/Q scenario with the SNR fixed to 588

30 dB. As is seen, the bias of CJML and CML is smaller than 589

1.5 × 10−3, while higher values are observed with JML. This 590

contradicts the theoretical analysis of Sect. IV.B, where it was 591

shown that E{ϕ̂J M L} = ϕ. Such a discrepancy can be justified 592

by recalling that our theoretical results are accurate only in the 593

presence of small estimation errors. 594

Figs. 8 and Fig. 9 illustrate the MSEE of the investigated 595

schemes as a function of the SNR for the FS-I/Q and FF- 596

I/Q scenarios, respectively, when ϕ varies uniformly over the 597

range [−π/4, π/4]. Comparisons are made with available CFO 598

recovery methods which exploit a repeated TP to cope with I/Q 599
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Fig. 8. Accuracy of the CFO estimators vs SNR in the FS-I/Q scenario.

Fig. 9. Accuracy of the CFO estimators vs SNR in the FF-I/Q scenario.

imbalances. Specifically, we consider the ESPRIT-based esti-600

mator illustrated in [11] and other heuristic algorithms proposed601

by Pan and Phoong (PP) in [8], by Kume, Lin and Yamashita602

(KLY) in [10], and by Wang, Xue, Liu, Ye and Ren (WXLYR)603

in [9]. At SNR values smaller than 24 dB, both CML and CJML604

outperform all the other methods, with CJML taking the lead as605

the SNR increases. Compared to CML and CJML, the ESPRIT-606

based scheme entails a loss of approximately 5 dB at medium607

SNR values, which increases to 10 dB when considering the608

JML. Such a remarkable loss is due to the poor accuracy of609

JML in case of small CFOs. The PP algorithm operates sat-610

isfactorily at medium-to-high SNR values, while a significant611

degradation is observed when the SNR decreases. As for KLY612

and WXLYR, they perform quite poorly. This is particularly613

evident for the latter scheme, whose MSEE curve is plagued by614

a considerable floor.615

Fig. 10 provides the bit-error-rate (BER) performance of616

an uncoded 64-QAM transmission when CFO correction is617

accomplished by resorting to CML, JML or CJML. We con-618

sider the general simulation set-up with ρ varying in the interval619

[0, 4] and with the SNR value fixed to 30 dB. In order to distin-620

guish the impact of the frequency estimates from that of other621

system impairments, ideal compensation of the I/Q imbalance622

parameters and ideal channel equalization is assumed. The BER623

value obtained in the presence of perfect frequency knowledge624

(PFK) is also shown as a benchmark. As expected, the BER625

curves exhibit the same trend of the MSEE curves shown in626

Fig. 10. BER for a 64-QAM modulation vs ρ with SNR = 30 dB.

Fig. 4. In particular, we see that the error-rate increases with 627

ρ when using CML, while a reduced sensitivity to the I/Q 628

imbalance is observed when adopting JML and CJML. For 629

ρ = 1 all the considered schemes provides similar BER results, 630

thereby confirming that CML can perform satisfactorily in most 631

practical situations. 632

IX. CONCLUSIONS 633

We have presented an analytical investigation of the fre- 634

quency recovery problem in a direct-conversion receiver 635

affected by frequency selective I/Q imbalance. The first objec- 636

tive was to check whether traditional CFO estimators can be 637

applied or not to a DCR architecture. For this purpose, we 638

have analytically assessed the impact of the I/Q imbalance 639

on the performance of the conventional ML (CML) scheme. 640

Next, we have reviewed and analyzed the JML method, which 641

provides joint estimates of the CFO, the useful signal compo- 642

nent and its mirror image. Finally, we have derived a novel 643

scheme (CJML), which exploits some side-information about 644

the signal-to-interference ratio. It was shown that both CML 645

and JML can be obtained from CJML by properly adjusting the 646

value of a design parameter. In response to the questions raised 647

in Sect. I, the main conclusions that can be drawn from this 648

study are as follows: 649649

1) CML performs satisfactorily in most situations and out- 650

performs JML at SNR values of practical interest in 651

both the FS-I/Q and FF-I/Q scenarios. This result con- 652

tradicts the common idea that conventional frequency 653

recovery schemes for OFDM systems perform poorly in 654

the presence of I/Q imbalance; 655

2) CJML is able to get an effective balance between CML 656

and JML, and exhibits an excellent accuracy over a 657

large range of CFO and SNR values at the price of an 658

increased complexity. In a forward-looking perspective, 659

its improved resilience against I/Q imbalances can be 660

exploited to relax the requirements on hardware compo- 661

nents for DCR architectures; 662

3) JML performs poorly for small CFO values and, in 663

the medium SNR range, the MSEE analysis exhibits a 664

loss of approximately 10 dB with respect to CML and 665
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CJML. A remarkable loss is also observed with alterna-666

tive schemes based on the ESPRIT algorithm or other667

heuristic methods;668

4) The question of whether the improved accuracy of CJML669

justifies or not its increased complexity with respect to670

CML is controversial. The answer depends on many dif-671

ferent factors, such as the cost of hardware components,672

the impact of the increased power consumption on the673

battery life and the relative weight of the CJML complex-674

ity with respect to that of other fundamental functions,675

including data decoding. Overall, we expect that such676

a relative weight is marginal since data decoding must677

be continuously performed in the receiver, while fre-678

quency synchronization is typically accomplished once679

per frame.680

APPENDIX A681

In this Appendix we evaluate the mean and the MSEE of the682

CML estimate given in (16) under the simplifying assumption683

that the noise term w(t) in (1) is a ZMCSG complex random684

process. We begin by taking the derivatives of �C M L(ϕ) in685

(18), yielding686

� ′
C M L(ϕ) =

M−1∑
m=0

M−1∑
k=0

(k − m)Im
{

xH
m xke j (m−k)ϕ

}
(72)

� ′′
C M L(ϕ) = −

M−1∑
m=0

M−1∑
k=0

(k − m)2Re
{

xH
m xke j (m−k)ϕ

}
(73)

and rewrite (6) in vector form as687

xm = ηm + wm (74)

where ηm = ae j[m−(M−1)/2]ϕ + be− j[m−(M−1)/2]ϕ , while688

{wm; m = 0, 1, . . . ,M − 1} are statistically independent689

ZMCSG random vectors with covariance matrix σ 2
wIP .690

Denoting by δ(n) the Kronecker delta function, from (74) we691

get692

E
{

xH
m xke j (m−k)ϕ

}
= ηH

m ηke j (m−k)ϕ + σ 2
wPδ(m − k)e j (m−k)ϕ

(75)

which, after substituting into (72) and (73), produces693

E{� ′
C M L(ϕ)} = M2q ′

M (ϕ)
[
qM (ϕ)‖b‖2 + Re(aH b)

]
(76)

E{� ′′
C M L(ϕ)} = M2(M2 − 1)

6

{
[βM (ϕ)+ qM (ϕ)γM (ϕ)]‖b‖2

−‖a‖2 − [qM (ϕ)− γM (ϕ)]Re(aH b)
}

(77)

where qM (ϕ), βM (ϕ) and γM (ϕ) are defined in (22) and (24).694

Finally, inserting these results into (19), yields E{εC M L } as695

given in (21).696

Now, we concentrate on the computation of the MSEE. From697

(20), it turns out that we need the expectation of [� ′
C M L(ϕ)]

2698

which, using (72), can be rewritten as699

[� ′
C M L(ϕ)]

2 = −
M−1∑
m=0

M−1∑
k=0

M−1∑
n=0

M−1∑
�=0

(m − k)(n − �)

× e j (m−k)ϕe j (n−�)ϕxH
m xkxH

n x�. (78)

The expectation of (78) is computed by exploiting the identity 700

E{wH
m wkwH

n w�} = P2σ 4
wδ(m − k)δ(n − �)

+ Pσ 4
wδ(m − �)δ(k − n) (79)

and is found to be 701

E
{

[� ′
C M L(ϕ)]

2
}

= [
E{� ′

C M L(ϕ)}
]2

+ M3(M2 − 1)

6
AM (ϕ)σ

2
w + P

M2(M2 − 1)

6
σ 4
w (80)

where AM (ϕ) is defined in (26). Finally, taking (77) and (80) 702

into account, yields the MSEE of ϕ̂C M L as expressed in (25). 703

APPENDIX B 704

In this Appendix we solve the optimization problem (47), 705

which is reformulated as 706

min
ϕ̃

{
min
θ̃

P−1∑
p=0

∥∥∥x(p)− A2(ϕ̃)θ̃(p)
∥∥∥2

}
s.t. ‖b̃‖2 ≤ δ‖ã‖2

(81)

We start by solving the inner optimization problem with respect 707

to θ̃ and for a fixed ϕ̃. Applying the Karush-Kuhn-Tucker 708

(KKT) conditions to the Lagrangian function 709

L(ã, b̃, λ) =
P−1∑
p=0

∥∥∥x(p)− ã(p)u(ϕ̃)− b̃(p)u(−ϕ̃)
∥∥∥2

+ λ(‖b̃‖2 − δ‖ã‖2) (82)

we obtain 710

∂

∂ ã∗(p)
L(ã, b̃, λ)=

[
‖u(ϕ̃)‖2 − λδ

]
ã(p)+ uH (ϕ̃)u(−ϕ̃)b̃(p)

− uH (ϕ̃)x(p) = 0 (83a)

∂

∂ b̃∗(p)
L(ã, b̃, λ)=uH (−ϕ̃)u(ϕ̃)ã(p)+

[
‖u(−ϕ̃)‖2 + λ

]
b̃(p)

− uH (−ϕ̃)x(p) = 0 (83b)

for p = 0, 1, . . . , P − 1, with 711

λ ≥ 0 ‖b̃‖2 − δ‖ã‖2 ≤ 0 λ(‖b̃‖2 − δ‖ã‖2) = 0.
(83c)

After some algebraic computations, the solution of the KKT 712

equations is found to be 713

â(p) = [M + λ(ϕ̃)]uH (ϕ̃)x(p)− uH (ϕ̃)u(−ϕ̃)uH (−ϕ̃)x(p)
[M − δλ(ϕ̃)][M + λ(ϕ̃)] − |uH (ϕ̃)u(−ϕ̃)|2

(84a)
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b̂(p)= [M−δλ(ϕ̃)]uH (−ϕ̃)x(p)−uH (−ϕ̃)u(ϕ̃)uH (ϕ̃)x(p)
[M − δλ(ϕ̃)][M + λ(ϕ̃)] − |uH (ϕ̃)u(−ϕ̃)|2

(84b)

λ(ϕ̃) = max

⎛
⎝0,

ϒ2(ϕ̃)−
√
ϒ2

2 (ϕ̃)−ϒ1(ϕ̃)ϒ3(ϕ̃)

ϒ1(ϕ̃)

⎞
⎠ (84c)

where ϒ1(ϕ̃), ϒ2(ϕ̃) and ϒ3(ϕ̃) are defined in (55)–(57). The714

optimal value of ϕ̃ that solves (81) is eventually obtained by715

searching for the global minimum of the concentrated likeli-716

hood function, yielding717

ϕ̂c = arg min
ϕ̃∈[−π,π)

P−1∑
p=0

∥∥∥x(p)− â(p)u(ϕ̃)− b̂(p)u(−ϕ̃)
∥∥∥2
.

(85)

Taking (84a) and (84b) into account, after some computations718

we obtain the CJML estimator shown in (48)–(50).719

APPENDIX C720

In this Appendix we compute the CRB for the estimation of721

ϕ based on the signal model shown in (63) and (64). For this722

purpose, we collect the unknown parameters into a (4P + 1)-723

dimensional vector ς = [ϕ zT ]T and let Cw be the correlation724

matrix of w in (63). Then, the entries of the Fisher information725

matrix (FIM) Fς are given by [21]726

[
Fς

]
k1,k2

=
(
∂η

∂ςk1

)T

C−1
w

(
∂η

∂ςk2

)
1 ≤ k1, k2 ≤ 4P + 1.

(86)

Taking (65)–(67) into account, after lengthy computations727

we get728

Fς =
[
γ mT

m M

]
(87)

where γ = zT Q̇T C−1
w Q̇z, m = QT C−1

w Q̇z and M =729

QT C−1
w Q. In the latter expressions, Q̇ is defined as730

Q̇ = ∂Q
∂ϕ

= [
Q̇T

0 Q̇T
1 · · · Q̇T

M−1

]T
(88)

with Q̇m = diag{Ṙm, Ṙm, . . . , Ṙm︸ ︷︷ ︸
P

} and731

Ṙm =
(

m − M − 1

2

)[ −sm(ϕ) −cm(ϕ) −sm(ϕ) cm(ϕ)

cm(ϕ) −sm(ϕ) −cm(ϕ) −sm(ϕ)

]
.

(89)

The CRB for the estimation of ϕ corresponds to
[
F−1

ς

]
1,1

. Using732

well-known results for the inverse of a partitioned matrix [21],733

we obtain734

CRB(ϕ) = 1

γ − mT M−1m
(90)

which reduces to (68) after using the expressions of γ , m 735

and M. 736
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