93 research outputs found

    Are Well Performing Catalysts for the Ring Opening Polymerization of l -Lactide under Mild Laboratory Conditions Suitable for the Industrial Process? the Case of New Highly Active Zn(II) Catalysts

    Get PDF
    Poly(lactic acid) (PLA) is one of the best candidates as a sustainable plastic material for a circular economy, being biodegradable, bio-based, recyclable, and displaying good thermal and mechanical properties. The industrial production of PLA is mainly based on the ring opening polymerization (ROP) of l-lactide (l-LA) promoted by tin(II) 2-ethylhexanoate [Sn(Oct)2] in a continuous solvent-free process operating at temperatures between 180 and 200 °C, above the melting point of the resulting isotactic polymer. Despite the huge efforts in the research of alternative catalysts based on less toxic metals, resulting in a plethora of highly active catalysts under laboratory mild conditions, very few candidates can compete with Sn(Oct)2 under industrially relevant conditions. We report a family of new Zn(II) complexes, bearing variously substituted monoanionic [N,O-] (imidazole[1,5-a]pyrid-3-yl)phenolate ligands, as catalysts for the ROP of l-LA under both mild (20 °C, solvent) and industrially relevant (190 °C, in the melt, technical grade unpurified monomer, very low catalyst loading) conditions. Interestingly, the best performing catalyst under mild conditions is the worst performing under harsh conditions, and, on the contrary, the less active catalysts under mild conditions compete well with Sn(Oct)2 under industrially relevant conditions. Kinetic and DFT mechanistic investigations shed light on the non-trivial role of the 2-pyridine substituent in the catalytic performances at different temperatures. Preliminary depolymerization tests on commercial PLLA samples suggested that the new catalysts can also be a suitable candidate for the chemical recycling of PLA under mild conditions

    Surgical resection is superior to TACE in the treatment of HCC in a well selected cohort of BCLC-B elderly patients—A retrospective observational study

    Get PDF
    Simple Summary Hepatocellular carcinoma (HCC) is the most common primary liver malignancy. Liver transplantation (LT) and surgical resection (SR) are currently the primary treatments with curative intent. Nevertheless, more than two-thirds of patients are elderly and, therefore, excluded from LT; while, according to the Barcelona Clinic Liver Cancer (BCLC) system, SR should only be offered to a small group of patients with early stage HCC. The identification in stage B of an intermediate subgroup of patients that fulfill the criteria for surgery may play an important role in the implementation of potentially curative treatments. Hepatocellular carcinoma (HCC) usually develops in cirrhotic liver, with high recurrence rates. However, considering its increasing detection in non-cirrhotic liver, the choice of treatment assumes particular relevance. This study aimed to investigate outcomes of patients among BCLC stages and enrolled for surgical resection (SR) according to a more complex evaluation, to establish its safety and efficacy. A total of 186 selected HCC patients (median age 73.2 yrs), submitted to SR between January 2005 and January 2021, were retrospectively analyzed. Of which, 166 were staged 0, A, B according to the BCLC system, while 20 with a single large tumor (>5 cm) were classified as stage AB. No perioperative mortality was recorded; complications occurred in 48 (25.80%) patients, and all but two were Clavien-Dindo grade I-II. Median follow-up was 9.2 years. Subsequently, 162 recurrent patients (87,1%) were selected for new treatments. Comparable overall survival rates (OS) were observed at 1, 3, 5, and 10 years in 0, A, B and AB stages (p = 0.2). Eventually, the BCLC-B group was matched to 40 BCLC-B patients treated (2015-2021) with TACE. Significant differences in baseline characteristics (p <0.0001) and in OS were observed at 1 and 3 years (p <0.0001); a significant difference was also observed in oncological outcomes, in terms of the absence, residual, or relapse of disease (p <0.05). Surgery might be a valid treatment in HCC for patients affected by chronic liver disease in a condition of compensation, up to BCLC-B stage. Surgical indication for liver resection in case of HCC should be extensively revised

    Detection of astrovirus in a cow with neurological signs by nanopore technology, Italy

    Get PDF
    In this study, starting from nucleic acids purified from the brain tissue, Nanopore technology was used to identify the etiological agent of severe neurological signs observed in a cow which was immediately slaughtered. Histological examination revealed acute non-suppurative encephalomyelitis affecting the brainstem, cerebrum, cerebellum, and medulla oblongata, while by using PCR-based assays, the nucleic acids of major agents for neurological signs were not detected. By using Nanopore technology, 151 sequence reads were assigned to Bovine Astrovirus (BoAstV). Real-time RT-PCR and in situ hybridization (ISH) confirmed the presence of viral RNA in the brain. Moreover, using the combination of fluorescent ISH and immunofluorescence (IF) techniques, it was possible to detect BoAstV RNA and antigens in the same cells, suggesting the active replication of the virus in infected neurons. The nearly whole genome of the occurring strain (BoAstV PE3373/2019/Italy), obtained by Illumina NextSeq 500, showed the highest nucleotide sequence identity (94.11%) with BoAstV CH13/NeuroS1 26,730 strain, an encephalitis-associated bovine astrovirus. Here, we provide further evidence of the role of AstV as a neurotropic agent. Considering that in a high proportion of non-suppurative encephalitis cases, which are mostly indicative of a viral infection, the etiologic agent remains unknown, our result underscores the value and versatility of Nanopore technology for a rapid diagnosis when the PCR-based algorithm gives negative results

    A novel CXCR4 antagonist counteracts paradoxical generation of cisplatin-induced pro-metastatic niches in lung cancer

    Get PDF
    Platinum-based chemotherapy remains widely used in advanced non-small cell lung cancer (NSCLC) despite experimental evidence of its potential to induce long-term detrimental effects, including the promotion of pro-metastatic microenvironments. In this study, we investigated the interconnected pathways underlying the promotion of cisplatin-induced metastases. In tumor-free mice, cisplatin treatment resulted in an expansion in the bone marrow of CCR2+CXCR4+Ly6Chigh inflammatory monocytes (IMs) and an increase in lung levels of stromal SDF-1, the CXCR4 ligand. In experimental lung metastasis assays, cisplatin-induced IMs promoted the extravasation of tumor cells and the expansion of CD133+CXCR4+ metastasis-initiating cells (MICs). Peptide R, a novel CXCR4 inhibitor designed as an SDF-1 mimetic peptide, prevented cisplatin-induced IM expansion, the recruitment of IMs into the lungs, and the promotion of metastasis. At the primary tumor site, cisplatin treatment reduced tumor size while simultaneously inducing tumor release of SDF-1, MIC expansion, and recruitment of pro-invasive CXCR4+ macrophages. Co-recruitment of MICs and CCR2+CXCR4+ IMs to distant SDF-1-enriched sites also promoted spontaneous metastases that were prevented by CXCR4 blockade. In clinical specimens from NSCLC patients SDF-1 levels were found to be higher in platinum-treated samples and related to a worse clinical outcome. Our findings reveal that activation of the CXCR4/SDF-1 axis specifically mediates the pro-metastatic effects of cisplatin and suggest CXCR4 blockade as a possible novel combination strategy to control metastatic disease

    Potential Impact of Microplastics and Additives on the Health Status of Loggerhead Turtles (Caretta caretta) Stranded Along the Central Adriatic Coast

    Get PDF
    AbstractLoggerhead sea turtle (C. caretta) is the official European bioindicator of marine litter in the Mediterranean Sea. In 2019, 8 sea turtles, out of 28 specimens loggerhead on the Adriatic coast of Molise, were subjected to necropsy. The intestinal contents were collected and the microplastics until 0.45 ÎŒm were extracted. Qualitative and quantitative assessments were performed by stereomicroscope observation and spectroscopic analyses (attenuated total reflection-Fourier transform infrared spectroscopy, ATR-FTIR and Raman microspectroscopy, RMS). Moreover, the analytical quantification of polyethylene terephthalate (PET), polycarbonate (PC), para phthalic acid (PTA) and bisphenol A (BPA) in fat and liver tissues was performed by LC-MS/MS. Microparticles ranging from 0.45 ÎŒm to 1 mm were found in all turtles, for a total of 623, while plastic litter greater than 1 mm were found only in 4 specimens (ranging from 0.03 to 0.11 g). Nineteen different polymers and 10 pigments, including polyester (100% of animals), high-density polyethylene (50%) and polypropylene (50%) were identified. BPA, PTA and PET were detected in fat and liver tissues of all animals, while PC was found only in 50%. A major prevalence was registered in the abdominal fat tissue, although only PC compounds were significantly higher in abdominal tissue (p < 0.05), except for free PTA with liver tissue being the most contaminated (p < 0.05). Microplastics and additives surely impact the health status of turtles that showed gastrointestinal impairment and an important level of contamination in tissues. Graphical abstrac

    Regulatory noncoding and predicted pathogenic coding variants of ccr5 predispose to severe covid-19

    Get PDF
    Genome-wide association studies (GWAS) found locus 3p21.31 associated with severe COVID-19. CCR5 resides at the same locus and, given its known biological role in other infection diseases, we investigated if common noncoding and rare coding variants, affecting CCR5, can predispose to severe COVID-19. We combined single nucleotide polymorphisms (SNPs) that met the suggestive significance level (P ≀ 1 × 10−5 ) at the 3p21.31 locus in public GWAS datasets (6406 COVID-19 hospitalized patients and 902,088 controls) with gene expression data from 208 lung tissues, Hi-C, and Chip-seq data. Through whole exome sequencing (WES), we explored rare coding variants in 147 severe COVID-19 patients. We identified three SNPs (rs9845542, rs12639314, and rs35951367) associated with severe COVID-19 whose risk alleles correlated with low CCR5 expression in lung tissues. The rs35951367 resided in a CTFC binding site that interacts with CCR5 gene in lung tissues and was confirmed to be associated with severe COVID-19 in two independent datasets. We also identified a rare coding variant (rs34418657) associated with the risk of developing severe COVID-19. Our results suggest a biological role of CCR5 in the progression of COVID-19 as common and rare genetic variants can increase the risk of developing severe COVID-19 by affecting the functions of CCR5

    The envelope protein of Usutu virus attenuates West Nile virus virulence in immunocompetent mice

    Get PDF
    West Nile virus (WNV) and Usutu virus (USUV) are the two most widespread mosquito-borne flaviviruses in Europe causing severe neuroinvasive disease in humans. Here, following standardization of the murine model with wild type (wt) viruses, we engineered WNV and USUV genome by reverse genetics. A recombinant virus carrying the 5â€Č UTR of WNV within the USUV genome backbone (r-USUV5â€Č-UTR WNV) was rescued; when administered to mice this virus did not cause signs or disease as wt USUV suggesting that 5â€Č UTR of a marked neurotropic parental WNV was not per se a virulence factor. Interestingly, a chimeric virus carrying the envelope (E) protein of USUV in the WNV genome backbone (r-WNVE-USUV) showed an attenuated profile in mice compared to wt WNV but significantly more virulent than wt USUV. Moreover, except when tested against serum samples originating from a live WNV infection, r-WNVE-USUV showed an identical antigenic profile to wt USUV confirming that E is also the major immunodominant protein of USUV

    The Role of Testosterone in the Elderly: What Do We Know?

    Get PDF
    Testosterone is the most important hormone in male health. Aging is characterized by testosterone deficiency due to decreasing testosterone levels associated with low testicular production, genetic factors, adiposity, and illness. Low testosterone levels in men are associated with sexual dysfunction (low sexual desire, erectile dysfunction), reduced skeletal muscle mass and strength, decreased bone mineral density, increased cardiovascular risk and alterations of the glycometabolic profile. Testosterone replacement therapy (TRT) shows several therapeutic effects while maintaining a good safety profile in hypogonadal men. TRT restores normal levels of serum testosterone in men, increasing libido and energy level and producing beneficial effects on bone density, strength and muscle as well as yielding cardioprotective effects. Nevertheless, TRT could be contraindicated in men with untreated prostate cancer, although poor findings are reported in the literature. In addition, different potential side effects, such as polycythemia, cardiac events and obstructive sleep apnea, should be monitored. The aim of our review is to provide an updated background regarding the pros and cons of TRT, evaluating its role and its clinical applicability in different domains

    Impact of endometriosis on obstetric outcome after natural conception: a multicenter Italian study

    Get PDF
    Purpose To evaluate obstetric outcome in women with endometriosis who conceive naturally and receive standard obstetric care in Italy. Methods Cases were consecutive women with endometriosis managed in eleven Italian referral centers. Controls were women in whom endometriosis was excluded. All women filled in a questionnaire addressing previous natural pregnancies. Marginal logistic regression models were fitted to evaluate the impact of endometriosis on obstetric outcome. A post hoc analysis was performed within the endometriosis group comparing women with severe adenomyosis versus women with absent or mild adenomyosis. Results Three hundred and fifty-five pregnancies in endometriosis group and 741 pregnancies in control group were included. Women with endometriosis had a higher risk of preterm delivery &lt; 34 weeks (6.4% vs 2.8%, OR 2.42, 95% CI 1.22–4.82), preterm delivery &lt; 37 weeks (17.8% vs 9.7%, OR 1.98, 95% CI 1.23–3.19), and neonatal admission to Intensive Care Unit (14.1% vs 7.0%, OR 2.04, 95% CI 1.23–3.36). At post hoc analysis, women with endometriosis and severe adenomyosis had an increased risk of placenta previa (23.1% vs 1.8%, OR 16.68, 95% CI 3.49–79.71), cesarean delivery (84.6% vs 38.9%, OR 8.03, 95% CI 1.69–38.25) and preterm delivery &lt; 34 weeks (23.1% vs 5.7%, OR 5.52, 95% CI 1.38–22.09). Conclusion Women with endometriosis who conceive naturally have increased risk of preterm delivery and neonatal admission to intensive care unit. When severe adenomyosis is coexistent with endometriosis, women may be at increased risk of placenta previa and cesarean delivery. Trial registration Clinical trial registration number: NCT03354793

    The CD34-Related Molecule Podocalyxin Is a Potent Inducer of Microvillus Formation

    Get PDF
    BACKGROUND: Podocalyxin is a CD34-related transmembrane protein involved in hematopoietic cell homing, kidney morphogenesis, breast cancer progression, and epithelial cell polarization. Although this sialomucin has been shown to block cell adhesion, the mechanisms involved remain enigmatic. It has, however, been postulated that the adaptor proteins NHERF-1 and 2 could regulate apical targeting of Podocalyxin by linking it to the actin cytoskeleton. PRINCIPAL FINDINGS: Here, in contrast, we find that full-length Podocalyxin acts to recruit NHERF-1 to the apical domain. Moreover, we show that ectopic expression of Podocalyxin in epithelial cells leads to microvillus formation along an expanded apical domain that extends laterally to the junctional complexes. Removal of the C-terminal PDZ-binding domain of Podocalyxin abolishes NHERF-1 recruitment but, surprisingly, has no effect on the formation of microvilli. Instead, we find that the extracellular domain and transmembrane region of Podocalyxin are sufficient to direct recruitment of filamentous actin and ezrin to the plasma membrane and induce microvillus formation. CONCLUSIONS/SIGNIFICANCE: Our data suggest that this single molecule can modulate NHERF localization and, independently, act as a key orchestrator of apical cell morphology, thereby lending mechanistic insights into its multiple roles as a polarity regulator, tumor progression marker, and anti-adhesin
    • 

    corecore