223 research outputs found

    Evidence for a developing gap in a 10 Myr old protoplanetary disk

    Get PDF
    We have developed a self-consistent model of the disk around the nearby 10 Myr old star TW Hya which matches the observed spectral energy distribution and 7mm images of the disk. The model requires a significant dust size evolution and a partially-evacuated inner disk region, as predicted by theories of planet formation. The outer disk, which extends to at least 140 AU in radius, is very optically thick at IR wavelengths and quite massive ~0.06 Msun for the relatively advanced age of this T Tauri star. This implies long viscous and dust evolution timescales, although dust must have grown to sizes of order ~1cm to explain the sub-mm and mm spectral slopes. In contrast, the negligible near-infrared excess emission of this system requires that the disk be optically thin inside ~4 AU.This inner region cannot be completely evacuated; we need ~0.5 lunar mass of ~1 micron particles remaining to produce the observed 10 micron silicate emission. Our model requires a distinct transition in disk properties at ~4 AU, separating the inner and outer disk. The inner edge of the optically-thick outer disk must be heated almost frontally by the star to account for the excess flux at mid-IR wavelengths. We speculate that this truncation of the outer disk may be the signpost of a developing gap due to the effects of a growing protoplanet; the gap is still presumably evolving because material still resides in it, as indicated by the silicate emission, the molecular hydrogen emission, and by the continued accretion onto the central star (albeit at a much lower rate than typical of younger T Tauri stars). TW Hya thus may become the Rosetta stone for our understanding of the evolution and dissipation of protoplanetary disks.Comment: 23 pages including 5 figures, Accepted by AP

    Nutrient overload, insulin resistance, and ribosomal protein S6 kinase 1, S6K1

    Get PDF
    Nutrient overload leads to obesity, insulin resistance, and often type 2 diabetes. Whereas increased fat intake is commonly cited as the major factor in diet-induced dysmetabolic states, increased protein consumption also contributes, through elevated circulating amino acids. Recent studies have revealed that ribosomal protein S6 kinase 1, S6K1, an effector of mTOR, is sensitive to both insulin and nutrients, including amino acids. Although S6K1 is an effector of growth, recent reports show that amino acids also negatively affect insulin signaling through mTOR/S6K1 phosphorylation of IRS1. Moreover, rather than signaling through the class 1 PI3K pathway, amino acids appear to mediate mTOR activation through class 3 PI3K, or hVps34. Consistent with this, infusion of amino acids into humans leads to S6K1 activation, inhibition of insulin-induced class 1 PI3K activation, and insulin resistance. Thus, S6K1 may mediate deleterious effects, like insulin resistance, and potentially type 2 diabetes in the face of nutrient excess

    A Spatially Resolved Inner Hole in the Disk around GM Aurigae

    Full text link
    We present 0.3 arcsec resolution observations of the disk around GM Aurigae with the Submillimeter Array (SMA) at a wavelength of 860 um and with the Plateau de Bure Interferometer at a wavelength of 1.3 mm. These observations probe the distribution of disk material on spatial scales commensurate with the size of the inner hole predicted by models of the spectral energy distribution. The data clearly indicate a sharp decrease in millimeter optical depth at the disk center, consistent with a deficit of material at distances less than ~20 AU from the star. We refine the accretion disk model of Calvet et al. (2005) based on the unresolved spectral energy distribution (SED) and demonstrate that it reproduces well the spatially resolved millimeter continuum data at both available wavelengths. We also present complementary SMA observations of CO J=3-2 and J=2-1 emission from the disk at 2" resolution. The observed CO morphology is consistent with the continuum model prediction, with two significant deviations: (1) the emission displays a larger CO J=3-2/J=2-1 line ratio than predicted, which may indicate additional heating of gas in the upper disk layers; and (2) the position angle of the kinematic rotation pattern differs by 11 +/- 2 degrees from that measured at smaller scales from the dust continuum, which may indicate the presence of a warp. We note that photoevaporation, grain growth, and binarity are unlikely mechanisms for inducing the observed sharp decrease in opacity or surface density at the disk center. The inner hole plausibly results from the dynamical influence of a planet on the disk material. Warping induced by a planet could also potentially explain the difference in position angle between the continuum and CO data sets.Comment: 12 pages, 6 figures, accepted for publication in Ap

    Empirical Constraints on Turbulence in Protoplanetary Accretion Disks

    Full text link
    We present arcsecond-scale Submillimeter Array observations of the CO(3-2) line emission from the disks around the young stars HD 163296 and TW Hya at a spectral resolution of 44 m/s. These observations probe below the ~100 m/s turbulent linewidth inferred from lower-resolution observations, and allow us to place constraints on the turbulent linewidth in the disk atmospheres. We reproduce the observed CO(3-2) emission using two physical models of disk structure: (1) a power-law temperature distribution with a tapered density distribution following a simple functional form for an evolving accretion disk, and (2) the radiative transfer models developed by D'Alessio et al. that can reproduce the dust emission probed by the spectral energy distribution. Both types of models yield a low upper limit on the turbulent linewidth (Doppler b-parameter) in the TW Hya system (<40 m/s), and a tentative (3-sigma) detection of a ~300 m/s turbulent linewidth in the upper layers of the HD 163296 disk. These correspond to roughly <10% and 40% of the sound speed at size scales commensurate with the resolution of the data. The derived linewidths imply a turbulent viscosity coefficient, alpha, of order 0.01 and provide observational support for theoretical predictions of subsonic turbulence in protoplanetary accretion disks.Comment: 18 pages, 9 figures, accepted for publication in Ap

    Recyclable calix[4]arene–lanthanoid luminescent hybrid materials with color-tuning and color-switching properties

    Get PDF
    Inorganic–organic hybrid materials combine the properties of both components providing functionality with a wide range of potential applications. Phase segregation of the inorganic and organic components is a common challenge in these systems, which is overcome here by copolymerizing a metal-free calixarene ionophore and methyl methacrylate. A lanthanoid ion is then added using a swelling–deswelling procedure. The resulting luminescent hybrid materials can be made to emit any required color, including white light, by loading with an appropriate mixture of lanthanoids. The gradation of the emitted color can also be finely adjusted by changing the excitation wavelength. The polymer monolith can be recycled to emit a different color by swelling with a solution containing a different lanthanoid ion. This methodology is flexible and has the potential to be extended to many different ionophores and polymer matrices
    • …
    corecore