94 research outputs found
Tyr682 in the Aβ-precursor protein intracellular domain regulates synaptic connectivity, cholinergic function, and cognitive performance.
Processing of Aβ-precursor protein (APP) plays an important role in Alzheimer's disease (AD) pathogenesis. The APP intracellular domain contains residues important in regulating APP function and processing, in particular the 682YENPTY687 motif. To dissect the functions of this sequence in vivo, we created an APP knock-in allele mutating Y682 to Gly (APP(YG/YG) mice). This mutation alters the processing of APP and TrkA signaling and leads to postnatal lethality and neuromuscular synapse defects when expressed on an APP-like protein 2 KO background. This evidence prompted us to characterize further the APP(YG/YG) mice. Here, we show that APP(YG/YG) mice develop aging-dependent decline in cognitive and neuromuscular functions, a progressive reduction in dendritic spines, cholinergic tone, and TrkA levels in brain regions governing cognitive and motor functions. These data are consistent with our previous findings linking NGF and APP signaling and suggest a causal relationship between altered synaptic connectivity, cholinergic tone depression and TrkA signaling deficit, and cognitive and neuromuscular decline in APP(YG/YG) mice. The profound deficits caused by the Y682 mutation underscore the biological importance of APP and indicate that APP(YG/YG) are a valuable mouse model to study APP functions in physiological and pathological processes
Recommended from our members
Extracellular Tau Oligomers Produce An Immediate Impairment of LTP and Memory
Non-fibrillar soluble oligomeric forms of amyloid-β peptide (oAβ) and tau proteins are likely to play a major role in Alzheimer’s disease (AD). The prevailing hypothesis on the disease etiopathogenesis is that oAβ initiates tau pathology that slowly spreads throughout the medial temporal cortex and neocortices independently of Aβ, eventually leading to memory loss. Here we show that a brief exposure to extracellular recombinant human tau oligomers (oTau), but not monomers, produces an impairment of long-term potentiation (LTP) and memory, independent of the presence of high oAβ levels. The impairment is immediate as it raises as soon as 20min after exposure to the oligomers. These effects are reproduced either by oTau extracted from AD human specimens, or naturally produced in mice overexpressing human tau. Finally, we found that oTau could also act in combination with oAβ to produce these effects, as sub-toxic doses of the two peptides combined lead to LTP and memory impairment. These findings provide a novel view of the effects of tau and Aβ on memory loss, offering new therapeutic opportunities in the therapy of AD and other neurodegenerative diseases associated with Aβ and tau pathology
The Intracellular Threonine of Amyloid Precursor Protein That Is Essential for Docking of Pin1 Is Dispensable for Developmental Function
Background: Processing of Ab-precursor protein (APP) plays an important role in Alzheimer’s Disease (AD) pathogenesis. Thr residue at amino acid 668 of the APP intracellular domain (AID) is highly conserved. When phosphorylated, this residue generates a binding site for Pin1. The interaction of APP with Pin1 has been involved in AD pathogenesis. Methodology/Principal Findings: To dissect the functions of this sequence in vivo, we created an APP knock-in allele, in which Thr 668 is replaced by an Ala (T 668 A). Doubly deficient APP/APP-like protein 2 (APLP2) mice present postnatal lethality and neuromuscular synapse defects. Previous work has shown that the APP intracellular domain is necessary for preventing early lethality and neuromuscular junctions (NMJ) defects. Crossing the T 668 A allele into the APLP2 knockout background showed that mutation of Thr 668 does not cause a defective phenotype. Notably, the T 668 A mutant APP is able to bind Mint1. Conclusions/Significance: Our results argue against an important role of the Thr 668 residue in the essential function of APP in developmental regulation. Furthermore, they indicate that phosphorylation at this residue is not functionally involved i
Do hypoxia/normoxia culturing conditions change the neuroregulatory profile of Wharton Jelly mesenchymal stem cells secretome?
Introduction: The use of human umbilical cord Wharton Jelly-derived mesenchymal stem cells (hWJ-MSCs) has been considered a new potential source for future safe applications in regenerative medicine. Indeed, the application of hWJ-MSCs into different animal models of disease, including those from the central nervous system, has shown remarkable therapeutic benefits mostly associated with their secretome. Conventionally, hWJ-MSCs are cultured and characterized under normoxic conditions (21 % oxygen tension), although the oxygen levels within tissues are typically much lower (hypoxic) than these standard culture conditions. Therefore, oxygen tension represents an important environmental factor that may affect the performance of mesenchymal stem cells in vivo. However, the impact of hypoxic conditions on distinct mesenchymal stem cell characteristics, such as the secretome, still remains unclear. Methods: In the present study, we have examined the effects of normoxic (21 % O2) and hypoxic (5 % O2) conditions on the hWJ-MSC secretome. Subsequently, we address the impact of the distinct secretome in the neuronal cell survival and differentiation of human neural progenitor cells. Results: The present data indicate that the hWJ-MSC secretome collected from normoxic and hypoxic conditions displayed similar effects in supporting neuronal differentiation of human neural progenitor cells in vitro. However, proteomic analysis revealed that the use of hypoxic preconditioning led to the upregulation of several proteins within the hWJ-MSC secretome. Conclusions: Our results suggest that the optimization of parameters such as hypoxia may lead to the development of strategies that enhance the therapeutic effects of the secretome for future regenerative medicine studies and applications. © 2015 Teixeira et al.Portuguese Foundation for Science and Technology (FCT) (Ciência 2007
program and IF Development Grant (AJS); and pre-doctoral fellowships to
FGT (SFRH/69637/ 2010) and SIA (SFRH/BD/81495/2011); Canada Research
Chairs (LAB) and a SSE Postdoctoral Fellowship (KMP); The National Mass
Spectrometry Network (RNEM) (REDE/1506/REM/2005); co-funded by Programa
Operacional Regional do Norte (ON.2 – O Novo Norte), ao abrigo do Quadro de
Referência Estratégico Nacional (QREN), através do Fundo Europeu de
Desenvolvimento Regional (FEDER).info:eu-repo/semantics/publishedVersio
Glucocorticoids in T cell apoptosis and function
Glucocorticoids (GCs) are a class of steroid hormones which regulate a variety of essential biological functions. The profound anti-inflammatory and immunosuppressive activity of synthetic GCs, combined with their power to induce lymphocyte apoptosis place them among the most commonly prescribed drugs worldwide. Endogenous GCs also exert a wide range of immunomodulatory activities, including the control of T cell homeostasis. Most, if not all of these effects are mediated through the glucocorticoid receptor, a member of the nuclear receptor superfamily. However, the signaling pathways and their cell type specificity remain poorly defined. In this review, we summarize our present knowledge on GC action, the mechanisms employed to induce apoptosis and the currently discussed models of how they may participate in thymocyte development. Although our knowledge in this field has substantially increased during recent years, we are still far from a comprehensive picture of the role that GCs play in T lymphocytes
GILZ inhibits the mTORC2/AKT pathway in BCR-ABL+ cells
The malignant phenotype of chronic myeloid leukemia (CML) is due to the abnormal tyrosine kinase activity of the BCR-ABL oncoprotein, which signals several downstream cell survival pathways, including phosphoinositide 3-kinase/AKT, signal transducer and activator of transcription 5 and extracellular signal-regulated kinase 1/2. In patients with CML, tyrosine kinase inhibitors (TKIs) are used to suppress the BCR-ABL tyrosine kinase, resulting in impressive response rates. However, resistance can occur, especially in acute-phase CML, through various mechanisms. Here, we show that the glucocorticoid-induced leucine zipper protein (GILZ) modulates imatinib and dasatinib resistance and suppresses tumor growth by inactivating the mammalian target of rapamycin complex-2 (mTORC2)/AKT signaling pathway. In mouse and human models, GILZ binds to mTORC2, but not to mTORC1, inhibiting phosphorylation of AKT (at Ser473) and activating FoxO3a-mediated transcription of the pro-apoptotic protein Bim; these results demonstrate that GILZ is a key inhibitor of the mTORC2 pathway. Furthermore, CD34+ stem cells isolated from relapsing CML patients underwent apoptosis and showed inhibition of mTORC2 after incubation with glucocorticoids and imatinib. Our findings provide new mechanistic insights into the role of mTORC2 in BCR-ABL+ cells and indicate that regulation by GILZ may influence TKI sensitivity
- …