2,967 research outputs found
Endocannabinoid-related compounds in gastrointestinal diseases
The endocannabinoid system (ECS) is an endogenous signalling pathway involved in the control of several gastrointestinal (GI) functions at
both peripheral and central levels. In recent years, it has become apparent that the ECS is pivotal in the regulation of GI motility, secretion and
sensitivity, but endocannabinoids (ECs) are also involved in the regulation of intestinal inflammation and mucosal barrier permeability, suggesting
their role in the pathophysiology of both functional and organic GI disorders. Genetic studies in patients with irritable bowel syndrome (IBS)
or inflammatory bowel disease have indeed shown significant associations with polymorphisms or mutation in genes encoding for cannabinoid
receptor or enzyme responsible for their catabolism, respectively. Furthermore, ongoing clinical trials are testing EC agonists/antagonists in the
achievement of symptomatic relief from a number of GI symptoms. Despite this evidence, there is a lack of supportive RCTs and relevant data
in human beings, and hence, the possible therapeutic application of these compounds is raising ethical, political and economic concerns. More
recently, the identification of several EC-like compounds able to modulate ECS function without the typical central side effects of cannabinomimetics
has paved the way for emerging peripherally acting drugs. This review summarizes the possible mechanisms linking the ECS to GI
disorders and describes the most recent advances in the manipulation of the ECS in the treatment of GI diseases
Spatial and temporal hot spots of Aedes albopictus abundance inside and outside a South European metropolitan area
Aedes albopictus is a tropical invasive species which in the last decades spread worldwide,
also colonizing temperate regions of Europe and US, where it has become a public health
concern due to its ability to transmit exotic arboviruses, as well as severe nuisance problems
due to its aggressive daytime outdoor biting behaviour. While several studies have
been carried out in order to predict the potential limits of the species expansions based on
eco-climatic parameters, few studies have so far focused on the specific effects of these
variables in shaping its micro-geographic abundance and dynamics. The present study
investigated eco-climatic factors affecting Ae. albopictus abundance and dynamics in metropolitan
and sub-urban/rural sites in Rome (Italy), which was colonized in 1997 and is nowadays
one of the most infested metropolitan areas in Southern Europe. To this aim,
longitudinal adult monitoring was carried out along a 70 km-transect across and beyond the
most urbanized and densely populated metropolitan area. Two fine scale spatiotemporal
datasets (one with reference to a 20m circular buffer around sticky traps used to collect
mosquitoes and the second to a 300m circular buffer within each sampling site) were
exploited to analyze the effect of climatic and socio-environmental variables on Ae. albopictus
abundance and dynamics along the transect. Results showed an association between
highly anthropized habitats and high adult abundance both in metropolitan and sub-urban/
rural areas, with “small green islands” corresponding to hot spots of abundance in the metropolitan
areas only, and a bimodal seasonal dynamics with a second peak of abundance in
autumn, due to heavy rains occurring in the preceding weeks in association with permissive
temperatures. The results provide useful indications to prioritize public mosquito control
measures in temperate urban areas where nuisance, human-mosquito contact and risk of
local arbovirus transmission are likely higher, and highlight potential public health risks also
after the summer months typically associated with high mosquito densities
Enriched environment reduces glioma growth through immune and non-immune mechanisms in mice
Mice exposed to standard (SE) or enriched environment (EE) were transplanted with murine or human glioma cells and differences in tumour development were evaluated. We report that EE exposure affects: (i) tumour size, increasing mice survival; (ii) glioma establishment, proliferation and invasion; (iii) microglia/macrophage (M/Mφ) activation; (iv) natural killer (NK) cell infiltration and activation; and (v) cerebral levels of IL-15 and BDNF. Direct infusion of IL-15 or BDNF in the brain of mice transplanted with glioma significantly reduces tumour growth. We demonstrate that brain infusion of IL-15 increases the frequency of NK cell infiltrating the tumour and that NK cell depletion reduces the efficacy of EE and IL-15 on tumour size and of EE on mice survival. BDNF infusion reduces M/Mφ infiltration and CD68 immunoreactivity in tumour mass and reduces glioma migration inhibiting the small G protein RhoA through the truncated TrkB.T1 receptor. These results suggest alternative approaches for glioma treatment
The glycoside oleandrin reduces glioma growth with direct and indirect effects on tumor cells
Oleandrin is a glycoside that inhibits the ubiquitous enzyme Na(+)/K(+)-ATPase. In addition to its known effects on cardiac muscle, recent in vitro and in vivo evidence highlighted its potential for anticancer properties. Here, we evaluated for the first time the effect of oleandrin on brain tumors. To this aim, mice were transplanted with human or murine glioma and analyzed for tumor progression upon oleandrin treatment. In both systems, oleandrin impaired glioma development, reduced tumor size, and inhibited cell proliferation. We demonstrated that oleandrin does the following: (1) enhances the brain-derived neurotrophic factor (BDNF) level in the brain; (2) reduces both microglia/macrophage infiltration and CD68 immunoreactivity in the tumor mass; (3) decreases astrogliosis in peritumoral area; and (4) reduces glioma cell infiltration in healthy parenchyma. In BDNF-deficient mice (bdnftm1Jae/J) and in glioma cells silenced for TrkB receptor expression, oleandrin was not effective, indicating a crucial role for BDNF in oleandrin's protective and antitumor functions. In addition, we found that oleandrin increases survival of temozolomide-treated mice. These results encourage the development of oleandrin as possible coadjuvant agent in clinical trials of glioma treatment.SIGNIFICANCE STATEMENT In this work, we paved the road for a new therapeutic approach for the treatment of brain tumors, demonstrating the potential of using the cardioactive glycoside oleandrin as a coadjuvant drug to standard chemotherapeutics such as temozolomide. In murine models of glioma, we demonstrated that oleandrin significantly increased mouse survival and reduced tumor growth both directly on tumor cells and indirectly by promoting an antitumor brain microenvironment with a key protective role played by the neurotrophin brain-derived neurotrophic factor
KCa3.1 channel inhibition sensitizes malignant gliomas to temozolomide treatment
Malignant gliomas are among the most frequent and aggressive cerebral tumors, characterized by high proliferative and invasive indexes. Standard therapy for patients, after surgery and radiotherapy, consists of temozolomide (TMZ), a methylating agent that blocks tumor cell proliferation. Currently, there are no therapies aimed at reducing tumor cell invasion. Ion channels are candidate molecular targets involved in glioma cell migration and infiltration into the brain parenchyma. In this paper we demonstrate that: i) blockade of the calcium-activated potassium channel KCa3.1 with TRAM-34 has co-adjuvant effects with TMZ, reducing GL261 glioma cell migration, invasion and colony forming activity, increasing apoptosis, and forcing cells to pass the G2/M cell cycle phase, likely through cdc2 de-phosphorylation; ii) KCa3.1 silencing potentiates the inhibitory effect of TMZ on glioma cell viability; iii) the combination of TMZ/TRAM-34 attenuates the toxic effects of glioma conditioned medium on neuronal cultures, through a microglia dependent mechanism since the effect is abolished by clodronate-induced microglia killing; iv) TMZ/TRAM-34 co-treatment increases the number of apoptotic tumor cells, and the mean survival time in a syngeneic mouse glioma model (C57BL6 mice implanted with GL261 cells); v) TMZ/TRAM-34 co-treatment reduces cell viability of GBM cells and cancer stem cells (CSC) freshly isolated from patients.Taken together, these data suggest a new therapeutic approach for malignant glioma, targeting both glioma cell proliferating and migration, and demonstrate that TMZ/TRAM-34 co-treatment affects both glioma cells and infiltrating microglia, resulting in an overall reduction of tumor cell progression
Recommended from our members
Ca2+-activated K+ channels modulate microglia affecting motor neuron survivalin hSOD1G93A mice
Recent studies described a critical role for microglia in amyotrophic lateral sclerosis (ALS), where these CNS-resident immune cells participate in the establishment of an inflammatory microenvironment that contributes to motor neuron degeneration. Understanding the mechanisms leading to microglia activation in ALS could help to identify specific molecular pathways which could be targeted to reduce or delay motor neuron degeneration and muscle paralysis in patients. The intermediate-conductance calcium-activated potassium channel KCa3.1 has been reported to modulate the "pro-inflammatory" phenotype of microglia in different pathological conditions. We here investigated the effects of blocking KCa3.1 activity in the hSOD1G93AALS mouse model, which recapitulates many features of the human disease. We report that treatment of hSOD1G93A mice with a selective KCa3.1 inhibitor, 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34), attenuates the "pro-inflammatory" phenotype of microglia in the spinal cord, reduces motor neuron death, delays onset of muscle weakness, and increases survival. Specifically, inhibition of KCa3.1 channels slowed muscle denervation, decreased the expression of the fetal acetylcholine receptor γ subunit and reduced neuromuscular junction damage. Taken together, these results demonstrate a key role for KCa3.1 in driving a pro-inflammatory microglia phenotype in ALS
Rifaximin improves Clostridium difficile toxin A-induced toxicity in Caco-2 cells by the PXR-dependent TLR4/MyD88 /NF-?B pathway
Background: Clostridium difficile infections (CDIs) caused by Clostridium difficile toxin A (TcdA) lead to severe ulceration,
inflammation and bleeding of the colon, and are difficult to treat.
Aim: The study aimed to evaluate the effect of rifaximin on TcdA-induced apoptosis in intestinal epithelial cells and investigate the role of PXR in its mechanism of action.
Methods: Caco‐2 cells were incubated with TcdA and treated with rifaximin (0.1−10 μM) with or without ketoconazole (10 μM). The transepithelial electrical resistance (TEER) and viability of the treated cells was determined. Also, the expression of zona occludens‐1 (ZO‐1), toll‐like receptor 4 (TLR4), Bcl‐2‐associated X protein (Bax), transforming growth factor‐β‐activated kinase‐1 (TAK1), myeloid differentiation factor 88 (MyD88) and nuclear factor‐kappaB (NF‐κB) was determined.
Results Rifaximin treatment (0.1, 1.0 and 10 μM) caused a significant and concentration-dependent increase in the TEER of Caco-2 cells (360%, 480% and 680% vs TcdA treatment) 24 hours after the treatment and improved their viability (61%, 79% and 105%). Treatment also concentration-dependently decreased the expression of Bax protein (–29%, –65% and –77%) and increased the expression of ZO-1 (25%, 54% and 87%) and occludin (71%, 114% and 262%) versus TcdA treatment. The expression of TLR4 (–33%, –50% and –75%), MyD88 (–29%, –60% and –81%) and TAK1 (–37%, –63% and –79%) were also reduced with rifaximin versus TcdA treatment. Ketoconazole treatment inhibited these effects.
Conclusions: Rifaximin improved TcdA‐induced toxicity in Caco‐2 cells by the PXR‐dependent TLR4/MyD88/NF‐κB pathway mechanism, and may be useful in the treatment of CDIs
Enteric glia: A new player in inflammatory bowel diseases
In addition to the well-known involvement of macrophages and neutrophils, other cell types have been recently reported to substantially contribute to the onset and progression of inflammatory bowel diseases (IBD). Enteric glial cells (EGC) are the equivalent cell type of astrocyte in the central nervous system (CNS) and share with them many neurotrophic and neuro-immunomodulatory properties. This short review highlights the role of EGC in IBD, describing the role played by these cells in the maintenance of gut homeostasis, and their modulation of enteric neuronal activities. In pathological conditions, EGC have been reported to trigger and support bowel inflammation through the specific over-secretion of S100B protein, a pivotal neurotrophic factor able to induce chronic inflammatory changes in gut mucosa. New pharmacological tools that may improve the current therapeutic strategies for inflammatory bowel diseases (IBD), lowering side effects (i.e. corticosteroids) and costs (i.e. anti-TNFα monoclonal antibodies) represent a very important challenge for gastroenterologists and pharmacologists. Novel drugs capable to modulate enteric glia reactivity, limiting the pro-inflammatory release of S100B, may thus represent a significant innovation in the field of pharmacological interventions for inflammatory bowel diseases
SPECIFIC DYSPEPTIC SYMPTOMS ARE ASSOCIATED WITH POOR RESPONSE TO THERAPY IN PATIENTS WITH GASTROESOPHAGEAL REFLUX DISEASE
Background: In gastroesophageal reflux disease (GORD) patients, coexistence of functional dyspepsia (FD) is known to be associated with poor response to proton pump inhibitors (PPIs), but the contribution of specific dyspepsia symptoms has not been systematically investigated yet. Objective: To characterize the impact of dyspepsia symptoms on PPIs response in GORD patients. Methods:. The enrolled subjects were 100 patients with diagnosis of GORD. All patients underwent a 24 hour pH-impedance test, while on PPIs-therapy. Patients were divided into two groups, refractory and responders, according to the persistence of GORD symptoms. A standardized questionnaire for FD was also administered to assess presence of dyspepsia symptoms. Results: In the subgroup of refractory patients FD was more prevalent than in responder ones, with postprandial fullness, nausea, vomiting, early satiation and epigastric pain being significantly prevalent in refractory GORD-patients. In the multivariate analysis only early satiation and vomiting were significantly associated with poor response to PPIs Conclusion: Coexistence of FD is associated with refractory-GORD. We showed that only early satiation and vomiting are risk factors for poor response to PPIs therapy. Our findings suggest that symptoms of early satiation and vomiting would help to identify the subset of PPIs-refractory GORD patients
S100B‐p53 disengagement by pentamidine promotes apoptosis and inhibits cellular migration via aquaporin‐4 and metalloproteinase‐2 inhibition in C6 glioma cells
S100 calcium‐binding protein B (S100B) is highly expressed in glioma cells and promotes cancer cell survival via inhibition of the p53 protein. In melanoma cells, this S100B‐p53 interaction is known to be inhibited by pentamidine isethionate, an antiprotozoal agent. Thus, the aim of the present study was to evaluate the effect of pentamidine on rat C6 glioma cell proliferation, migration and apoptosis in vitro. The change in C6 cell proliferation following treatment with pentamidine was determined by performing a 3‐[4,5‐dimethylthiazol‐2‐yl]‐2,5 diphenyltetrazolium bromide‐formazan assay. Significant dose‐dependent decreases in proliferation were observed at pentamidine concentrations of 0.05 μM (58.5±5%; P<0.05), 0.5 μM (40.6±7%; P<0.01) and 5 μM (13±4%; P<0.001) compared with the control (100% viability). Furthermore, treatment with 0.05, 0.5 and 5 μM pentamidine was associated with a significant increase in apoptosis versus the untreated cells, as determined by DNA fragmentation assays, immunofluorescence analysis of C6 chromatin using Hoechst staining, and immunoblot analysis of B‐cell lymphoma‐2 (Bcl‐2)‐associated X protein (100%, P<0.05; 453%, P<0.01; and 1000%, P<0.001, respectively) and Bcl‐2 (‐60%, P<0.001; ‐80.13%, P<0.001; ‐95%, P<0.001, respectively). In addition, the administration of 0.05, 0.5 and 5 μM pentamidine significantly upregulated the protein expression levels of p53 (681±87.5%, P<0.05; 1244±94.3%, P<0.01; and 2244±111%, P<0.001, respectively), and significantly downregulated the expression levels of matrix metalloproteinase‐2 (42±2.3%, P<0.05; 71±2.5%, P<0.01; and 95.8±3.3%, P<0.001, respectively) and aquaporin 4 (38±2.5%, P<0.05; 69±2.6%, P<0.01; and 88±3.0%, P<0.001, respectively), compared with the untreated cells. The wound healing assay demonstrated that cell migration was significantly impaired by treatment with 0.05, 0.5 and 5 μM pentamidine compared with untreated cells (88±4.2%, P<0.05; 64±2%, P<0.01; and 42±3.1%, P<0.001, respectively). Although additional in vivo studies are required to clarify the current in vitro data, the present study indicates that pentamidine and S100B‐p53 inhibitors may represent a novel approach for the treatment of glioma
- …
