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Introduction

Ulcerative colitis (UC) and Crohn’s disease (CD) 
represent the two major clinically defined forms of 
inflammatory bowel disease (IBD) that may affect 
the whole gastrointestinal tract and the colonic 
mucosa, respectively, and are associated with an 
increased risk of developing colon cancer.1,2 Even 
though widespread, IBD is more common in devel-
oped countries, with the highest incidence rates and 
prevalence registered in North America and Europe. 
However, a substantial variation in the epidemiol-
ogy of IBD has been lately observed with an alarm-
ing rise in prevalence in previously reported 
low-incidence areas, such as Asia, further pointing 
out the urgent need of new pharmacological 
approaches in the management of these diseases.

Usually, therapies for IBD include chronic 
administration of glucocorticosteroids and sul-
fasalazine derivatives. However, these drugs are 

not always effective and cannot be used for long-
term maintenance.3 In fact, steroids are useful in 
the short-term treatment of acute flares, but they 
may induce a number of systemic adverse reac-
tions during prolonged therapy.4,5 Sulfasalazine 
and its derivative 5-aminosalicylic acid (5-ASA) 
are effective only in mild-to-moderate phases of 
the disease and in preventing relapses.4–7 The intro-
duction of monoclonal anti-tumor necrosis 

Enteric glia: A new player in inflammatory 
bowel diseases

E Capoccia,1 C Cirillo,2 S Gigli,1 M Pesce,3 A D’Alessandro,3  
R Cuomo,3 G Sarnelli,3 L Steardo1 and G Esposito1 

Abstract
In addition to the well-known involvement of macrophages and neutrophils, other cell types have been recently reported 
to substantially contribute to the onset and progression of inflammatory bowel diseases (IBD). Enteric glial cells (EGC) 
are the equivalent cell type of astrocyte in the central nervous system (CNS) and share with them many neurotrophic 
and neuro-immunomodulatory properties. This short review highlights the role of EGC in IBD, describing the role 
played by these cells in the maintenance of gut homeostasis, and their modulation of enteric neuronal activities. In 
pathological conditions, EGC have been reported to trigger and support bowel inflammation through the specific over-
secretion of S100B protein, a pivotal neurotrophic factor able to induce chronic inflammatory changes in gut mucosa. 
New pharmacological tools that may improve the current therapeutic strategies for inflammatory bowel diseases (IBD), 
lowering side effects (i.e. corticosteroids) and costs (i.e. anti-TNFα monoclonal antibodies) represent a very important 
challenge for gastroenterologists and pharmacologists. Novel drugs capable to modulate enteric glia reactivity, limiting 
the pro-inflammatory release of S100B, may thus represent a significant innovation in the field of pharmacological 
interventions for inflammatory bowel diseases.

Keywords
enteric glia, S100B, enteric nervous system, inflammatory bowel diseases, nitric oxide

Date received: 12 January 2015; accepted: 3 July 2015

1�Department of Physiology and Pharmacology ‘Vittorio Erspamer’, 
University Sapienza of Rome, P.le Aldo Moro 5, 00185, Rome, Italy

2�Laboratory for Enteric NeuroScience (LENS), TARGID, KU Leuven, 
Herestraat 49, 3000, Leuven, Belgium

3�Department of Clinical and Experimental Medicine, University of 
Naples Federico II, Via S. Pansini 5, 80131, Naples, Italy

Corresponding author:
Giuseppe Esposito MsC. PhD, Department of Physiology and 
Pharmacology, “Vittorio Erspamer”, University Sapienza of Rome, 
Rome, 00185, Italy. 
Email: giuseppe.esposito@uniroma1.it

599707 IJI0010.1177/0394632015599707International Journal of Immunopathology and PharmacologyCapoccia et al.
research-article2015

Editorial

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della ricerca - Università degli studi di Napoli Federico II

https://core.ac.uk/display/55139213?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


444	 International Journal of Immunopathology and Pharmacology 28(4) 

factor-alpha (TNFα) antibodies (Infliximab and 
Adalimumab) in the therapy of IBD has radically 
changed their management, since these drugs are 
effective both in controlling moderate-to-severe 
forms of UC and CD and providing an efficient 
prevention of their relapses.8 However, the long-
term safety concerns of these drugs (i.e. the possi-
bility to allow the developing of aggressive form of 
cancer, particularly leukemia and lymphoma9), 
together with the high costs, limit the ordinary use 
of these therapeutics. Moreover, a poor response to 
anti-TNFα therapy has been observed in some 
forms of UC and CD.10 For these reasons, there is 
an urgent need for novel effective drugs, with man-
ageable side toxicity and low costs for patients. In 
this perspective, the identification and characteri-
zation of new therapeutic targets for the develop-
ment of innovative anti-IBD drugs appear to be 
crucial. The etiology of IBD has been extensively 
studied and several efforts have been made aiming 
at a better understanding of the pathophysiological 
mechanisms underlying the disease. Different 
studies have demonstrated the involvement of 
some risk factors including infectious agents, 
viruses and bacteria, autoimmune response, food 
allergies, hereditary factors, and co-morbid stress-
ing conditions.11,12 Generally, CD and UC have 
been univocally identified as autoimmune patholo-
gies and the mucosal macrophages and lympho-
cytes infiltration has been considered as the main 
responsible for the chronic inflammation, occur-
ring in the gut mucosa. Severe dysfunction of the 
mucosal immune system has been thus described 
to play an important role in the pathogenesis of 
IBD.13,14 In general, a wide range of inflammatory 
cells in the gut, such as mucosal CD4+ T cells, are 
thought to play a central role in both the induction 
and the persistence of chronic inflammation by 
producing pro-inflammatory cytokines.15 Several 
studies have demonstrated that the levels of T 
helper 1 (Th1)-related cytokines (e.g. TNFα, inter-
feron gamma (IFN)-γ, interleukin (IL)-12), as well 
as the concentration of other cytokines (e.g. 
IL-17A, IL-21, IL-23), are increased in the 
inflamed mucosa of these patients when compared 
to normal subjects.16–20 Pro-inflammatory cytokines 
may profoundly affect intestinal mucosal homeo-
stasis by inducing chronic inflammatory changes, 
including T cell and macrophage proliferation, 
expression of adhesion molecules and chemokines, 
and secretion of other pro-inflammatory cytokines 

that perpetuate, in turn, the chronic inflammation 
in the gut.19,20

From mucosal inflammation concept to the 
enteric-driven neuroinflammation concept

In recent years, it has become clear that the mucosal 
immune system alone may not account for all the 
aspects of IBD pathogenesis and pursuit of new 
players in CD and UC pathophysiology led to 
investigate the involvement of the enteric nervous 
system (ENS) in intestinal inflammation, enlarging 
the concept of inflammation to neuro-inflamma-
tion in IBD.

Although in patients with IBD morphological 
abnormalities of the ENS have been consistently 
described, only in the last decade have recent stud-
ies highlighted the changes occurring in both 
enteric neurons and enteric glial cells during intes-
tinal inflammation.21–24

The ENS takes part to the peripheral nervous 
system and it is located within the wall of the gas-
trointestinal tract. It has been considered the “brain 
of the gut” since, independently from the central 
nervous system (CNS), it coordinates many aspects 
of digestive functions such as motility, blood flow, 
and immune/inflammatory processes.25 Many fea-
tures of digestive function are guided by the ENS, 
a complex network of neurons and glia that works 
independently from the central nervous system. 
The ENS originates from the neural crest, which 
invades, proliferates, and migrates within the intes-
tinal wall until the whole bowel is colonized with 
enteric neural crest-derived cells (ENCDCs). Due 
to different factors and morphogens, the ENCDCs 
develop further, differentiating into glia and neu-
ronal sub-types, interplaying to form a functional 
nervous system.26 Histologically, the ENS is organ-
ized in two major ganglionated plexuses, the myen-
teric (Auerbach’s) and the submucosal (Meissner’s 
and Henle’s) plexus (Figure 1a). These ganglia 
contain neuron cell bodies and are interconnected 
by bundles of nerve processes. The myenteric 
plexus is located between the longitudinal and cir-
cular muscle throughout the gut, from the esopha-
gus to the rectum. It mainly innervates the 
muscolaris externa and controls intestinal motility. 
The sub-mucosal plexus, lying between the mucosa 
and the circular muscle, is involved in the regula-
tion of bowel secretion, especially in the small 
intestine where it is most located. A number of 
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morphological and functional distinct neurons are 
located in both plexuses, including primary affer-
ent neurons, sensitive to chemical and mechanical 
stimuli, interneurons, and motor neurons. Most of 
the enteric neurons involved in motor functions are 
located in the myenteric plexus with some primary 
afferent neurons located in submucosal plexus.27.

Though not fully understood, the neuroinflam-
matory process occurring during IBD refers to 

several structural and functional abnormalities 
occurring in the ENS. In these conditions both 
macroscopic changes (hypertrophy and hyperpla-
sia of nerve bundles and ganglia) and neurotrans-
mitter release adaptations in the ENS are commonly 
observed.22 In patients with IBD, morphological 
changes occurring in the ENS, ranging from the 
alteration of submucosal plexus structure to the 
retraction of neuronal fibers and the appearance of 
neuromatous lesions, are observed.23

Moreover, although the exact mechanism(s) at 
the basis of such alteration has/have not been fully 
understood, it is commonly accepted that the 
increased apoptosis of enteric neurons and EGC is 
closely correlated to several functional distur-
bances observed in IBD patients, such as gut dys-
motility and increased sensory perception.21–23

Enteric glia: The beautiful and the bad weather 
in the gut

Enteric glial cells (EGC), the phenotypical equiva-
lent of astrocytes into the CNS, are small cells with 
a star-like shape and are believed to represent the 
most abundant cells in the ENS;28 EGCs are for 
these reasons considered as active partners in ENS 
function.29 They display dynamic responses to 
neuronal inputs and may take part into the release 
of neuro-active factors. At present, EGCs of human 
gut are usually identified by the expression of the 
S100B and GFAP protein, as well as by the expres-
sion of more recently recognized markers such as 
Sox 10.30–33 EGCs surround enteric neuron bodies 
and axons,34 as well as intestinal blood vessels35 
while their processes extend into the mucosa.36 
Despite the previous assumption that EGCs may 
serve as mechanical support for enteric neurons, 
nowadays the knowledge on these cells is consist-
ently expanded. Functionally, EGCs are believed 
to be responsible for many of peripheral neurons 
functions trough the release of a variety of soluble 
factors.37 Under physiological conditions, major 
histocompatibility complex class I (MHC I) mole-
cules are constitutively expressed by EGCs, while 
MHC class II molecules are almost undetecta-
ble.38,39 It has become increasing clear that EGCs 
play a pivotal role in the regulation of intestinal 
homeostasis, leading to a more multifaceted and 
comprehensive knowledge of these cells.40 Beside 
their trophic and cytoprotective functions toward 
enteric neurons, enteric glial cells play a key role in 

Figure 1a.  Schematic representation of the gut wall. 
Myenteric plexus innervates the muscularis externa and 
controls the intestinal motility; the submucosal plexus 
innervates the submucosal blood vessels and is basically 
involved in the control of the intestinal secretory functions.

Figure 1b.  GFAP immunofluorescence staining in the enteric 
nervous system. The figure shows the localization of myenteric 
plexus and submucosal plexus networks in mice intestine 
indicated by green arrows. White arrows indicate the close 
proximity of enteric glial cell processes with epithelial cells in 
the mucosa. Magnification 100×.
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the intestinal epithelial barrier homeostasis and 
integrity.41 The intestinal barrier regulates the pas-
sage of the intestinal contents, preventing the dif-
fusion of microbes and other pathogens (including 
viruses) through the mucosa. EGCs are in close 
proximity of gut epithelial cells and similarly to 
their counterparts in the CNS, they may affect 
intestinal permeability through the release of sev-
eral mediators, directly controlling epithelial bar-
rier functions.42 Among the different EGC-related 
mediators, glial-derived neurotrophic factor 
(GDNF) plays a fundamental role in the preserva-
tion of mucosal integrity under the enteric glia sur-
veillance. GDNF indeed exerts anti-inflammatory 
effects via a dual mechanism; on one hand, it inhib-
its EGCs apoptosis in an autocrine manner; on the 
other, via a paracrine mechanism, it lowers the 
level of pro-inflammatory cytokines, such as IL-1β 
and TNFα, that significantly increases during IBD 
and gut infections.43 Recently it has been shown 
that EGCs can assure the integrity of the intestinal 
barrier through the release of S-nitrosoglutathione 
(GSNO).44 The effect of this metabolite is associ-
ated with the overexpression of tight junction asso-
ciated-proteins, for example zonula occludens-1 
(ZO-1) and occludin, that in turn prevents the 
intestinal barrier breakdown during an inflamma-
tory insult, linking with actin cytoskeleton ring and 
myosin light chain (MLC). Thus, EGCs play 
important functions in the maintenance of ENS 
homeostasis, but they may also proliferate and be 
activated in response to injury and inflammation, 
undergoing reactive gliosis (entero-gliosis).45,46,47 
In these conditions, EGCs activity is profoundly 
altered and, following injury and inflammation, 
these activated cells undergo a dynamic process 
associated with an increased proliferation and a 
pro-inflammatory phenotype.45,47,48 Enteroglial 
activation is characterized by the over-release of 
neurotrophins, growth factors, and cytokines that, 
in turn, recruit infiltrating immune cells such as 
macrophages, neutrophils, and mast cells in the 
colonic mucosa.47–49 During the onset and perpetu-
ation of the inflammatory state of the mucosa, 
EGCs control of mucosal integrity is markedly 
altered.50 These results are in line with several 
studies50–53 showing that ECGs can regulate the 
expression of genes responsible for adhesion, dif-
ferentiation, and proliferation of epithelial cells,54 
further confirming the importance of enteric glia in 
the epithelial barrier homeostasis. In the context of 

signaling molecules released by ECGs, the produc-
tion of transforming growth factor-β1 (TGF- β1) 
and vascular endothelial growth factor (VEGF) 
might be involved in the onset and metastasis of 
colon cancer during IBD, thanks to their effects on 
the epithelial cells proliferation and formation of 
new blood vessels.55 Very interestingly, different 
evidences let hypothesize that EGCs act as primum 
movens in triggering and amplifying the inflamma-
tory cascade during chronic inflammatory insult of 
the gut.45,46,56 An intriguing correlation between 
the degree of enteric gliosis and severity of gut 
inflammation has been also reported and an inti-
mate interaction between EGCs and the mucosal 
immune system has been observed.50,57

EGC drive neuroinflammation in IBD: The role of 
S100B protein and its partnership with nitric oxide

In recent years, it has been assumed that EGCs are 
involved in the chronic mucosal inflammation in 
UC; and many EGC-related signaling molecules 
thought to orchestrate such neuroinflammatory 
cross-talk are under extensive investigation.58,59 
The S100B protein, one of the typical markers of 
EGC, seems to play a crucial role in IBD.45 S100B 
is the homodimer of subunit and belongs to a 
Ca2+-Zn2+ binding proteins super-family that com-
prises more than 20 proteins.35 In the gut, S100B 
protein is constitutively expressed by EGCs45 while 
other members of S100 family, such as S100A8, 
S100A9, and S100A12 are expressed only under 
inflammatory conditions by phagocytes and intesti-
nal epithelial cells.45,60 The role exerted by S100B 
in gut inflammation has been only recently high-
lighted.45,61 S100B is a pivotal signaling molecule 
that participates at the onset and progression of the 
inflammatory status, as it coordinates a wide range 
of signal activation pathways, directly correlated 
with the severity of tissue damage.61 This is high-
lighted by the observation that rectal specimens 
from early diagnosed UC patients show an increased 
S100B protein expression (Figure 2a).45

The upregulation of S100B runs in parallel with 
an increased production of NO via the stimulation 
of iNOS protein expression. This is a very impor-
tant point since a large group of studies pointed out 
that in UC patients an abnormal NO secretion by 
pro-inflammatory cytokines has been observed due 
to the progressive activation of iNOS protein.62,63 
In more detail, researches performed by comparing 
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patients with UC and healthy subjects demon-
strated that rectal specimens from UC patients 
show an increased immunoreactivity for S100B 
protein and a significantly enhanced protein secre-
tion and expression.56 This upregulation cannot be 
considered a mere epiphenomenon because it is 
related to the specific activation of inducible NO 
synthase (iNOS) protein leading to an increase of 
NO level. Thus, S100B upregulation has a promi-
nent role during ulcerative colitis. The correlation 
between S100B upregulation and NO production is 
very interesting since, as previously described, UC 
is characterized by abnormal mucosal NO produc-
tion.63 EGCs ability of modulating NO levels via 
S100B release has been confirmed also in absence 
of a chronic inflammatory scenario. In fact, the 
administration of micromolar concentration of 
exogenous S100B is able to induce a concentra-
tion-dependent activation of iNOS expression and 
a subsequent enhanced NO production, in rectal 
mucosa of healthy subjects.56 In line with this it has 
been suggested that EGCs modulate the 
NO-dependent inflammatory response through the 
release of S100B within the intestinal milieu and 
let hypothesize that S100B release might be a first 
step in the onset of inflammation.64 Once released, 
S100B may accumulate at the RAGE (Receptor for 

Advanced Glycation End products) site in micro-
molar concentrations.65,66 Such interaction leads 
then to mitogen-activated protein kinase (MAPK) 
phosphorylation and consequent nuclear factor-
kappaB (NF-κB) activation which, in turn, induces 
the transcription of different cytokines, such as 
iNOS protein, IL-1B, TNFα (Figure 2b).67,68 
Although the mechanisms by which EGCs and 
their signaling molecule S100B may coordinate 
such a complex inflammatory scenario is just ini-
tially conceived; more recently, a close relation-
ship with toll-like receptors (TLRs) activation has 
been proposed.61 In fact, the direct interaction 
between S100B and RAGE receptors during colitis 
has to be considered an initial event triggering the 
activation of a specific downstream pathway 
involved in the maintenance of a persistent entero-
glial-sustained inflammation in the human gut. 
RAGE is also involved in the enteroglial TLRs 
signaling network, and it has become clear that, 
since EGCs express different TLR subtypes 
depending upon their pathophysiological func-
tions;69 these cells may be involved in a wider net-
work of neuro-immunological pathways. 
Supporting this hypothesis, a specific S100B/
RAGE/TLR-4 axis during gut inflammation has 
thus been observed as a pivotal molecular mecha-
nism sustaining EGC activation during UC.61

Figure 2a.  S100B protein in ulcerative colitis (UC). 
Immunofluorescence analysis showing the upregulation of 
S100B protein in UC versus healthy specimen. Arrows indicate 
S100B protein expression spots in both in myenteric plexus 
and in mucosa. Magnification 100×.

Figure 2b.  Schematic representation of the S100B pro-
inflammatory signaling. The linkage between S-100B and RAGE 
is able to increase the production of NO and other pro-
inflammatory cytokines via the activation of NFκB.
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Conclusions and perspectives: Could 
we consider EGC targeting as a novel 
approach to develop anti-IBD drugs?

The urgent need of new pharmacological 
approaches that may enlarge the tools against IBD, 
as well as a better knowledge on new molecular 
players involved in the triggering and perpetuation 
of inflammation in the gut is a very important chal-
lenge for pharmacologists and gastroenterologists. 
This review highlighted the importance of EGCs as 
fundamental cell type within the ENS that partici-
pate to the modulation of inflammatory responses 
in the human gut. ENS alterations, featured by 
apoptotic bodies of neurons and glia,70 especially 
in submucosal plexi, is commonly observed in 
human IBD, and it has been postulated to play a 
fundamental role in the in the occurrence of disor-
ders of intestinal motility and or secretion.21,23

EGCs trigger and promote chronic inflamma-
tion in the intestinal mucosa since these cells over-
release S100B that in turn determinates NO 
production. Such detrimental loop is responsible 
for a substantial recruitment of other target cells, 
including immune cells. In fact, EGC-derived 
S100B is able to affect peripheral macrophages 
and intestinal mucosal immune cell. A better under-
standing of the molecular mechanisms underlying 
EGC dysfunction, might constitute a new approach 
to increase the efficacy of new enteric-glia oriented 
drugs that may overcome the lack of long-term 
effectiveness of immunosuppressant agents used 
for IBD.

In the next future, molecules capable to selec-
tively target EGC-mediated neuroinflammation, 
might represent a novel approach to develop new 
therapeutic strategies for IBD. In this context, the 
possibility to interfere with the S100B/NO axis 
may pave the way to a significant improvement of 
the actual therapies against UC or CD. To this aim, 
in preclinical studies, we demonstrated that the 
specific inhibition of S100B protein activity with 
pentamidine, an antiprotozoal drug, resulted in a 
marked reduction of EGC-mediated neuroinflam-
mation severity in mice.71 Similar results were 
obtained in vivo in mice and in human UC-deriving 
cultured biopsies with palmitoylethanolamide 
(PEA), an endogenous autacoid local inflamma-
tion antagonism (ALIA)-mide, able to downregu-
late S100B protein expression and to inhibit 
S100B-dependent activation of TLR-4 on enteric 

glia.61 Both pharmacological approaches resulted 
in a significant downregulation of inflammatory 
parameters, and improved significantly the disease 
course through a selective enteroglial-specific tar-
geting, although in a preclinical evidence.

In conclusion, most of the studies on the role of 
enteric glia have been carried out in preclinical ani-
mal models of IBD. Although this might appear as 
a limitative factor due to the unpreventable differ-
ences emerging by the IBD process in vivo and the 
human disease, EGCs powerfully emerge as a very 
intriguing target on which develop selective drugs 
to treat CD and UC.
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