9,460 research outputs found
Recommended from our members
Agricultural management and plant selection interactively affect rhizosphere microbial community structure and nitrogen cycling.
BACKGROUND:Rhizosphere microbial communities are key regulators of plant performance, yet few studies have assessed the impact of different management approaches on the rhizosphere microbiomes of major crops. Rhizosphere microbial communities are shaped by interactions between agricultural management and host selection processes, but studies often consider these factors individually rather than in combination. We tested the impacts of management (M) and rhizosphere effects (R) on microbial community structure and co-occurrence networks of maize roots collected from long-term conventionally and organically managed maize-tomato agroecosystems. We also explored the interaction between these factors (M × R) and how it impacts rhizosphere microbial diversity and composition, differential abundance, indicator taxa, co-occurrence network structure, and microbial nitrogen-cycling processes. RESULTS:Host selection processes moderate the influence of agricultural management on rhizosphere microbial communities, although bacteria and fungi respond differently to plant selection and agricultural management. We found that plants recruit management-system-specific taxa and shift N-cycling pathways in the rhizosphere, distinguishing this soil compartment from bulk soil. Rhizosphere microbiomes from conventional and organic systems were more similar in diversity and network structure than communities from their respective bulk soils, and community composition was affected by both M and R effects. In contrast, fungal community composition was affected only by management, and network structure only by plant selection. Quantification of six nitrogen-cycling genes (nifH, amoA [bacterial and archaeal], nirK, nrfA, and nosZ) revealed that only nosZ abundance was affected by management and was higher in the organic system. CONCLUSIONS:Plant selection interacts with conventional and organic management practices to shape rhizosphere microbial community composition, co-occurrence patterns, and at least one nitrogen-cycling process. Reframing research priorities to better understand adaptive plant-microbe feedbacks and include roots as a significant moderating influence of management outcomes could help guide plant-oriented strategies to improve productivity and agroecosystem sustainability
Red Blood Cells from Individuals with Abdominal Obesity or Metabolic Abnormalities Exhibit Less Deformability upon Entering a Constriction.
Abdominal obesity and metabolic syndrome (MS) are multifactorial conditions associated with increased risk of cardiovascular disease and type II diabetes mellitus. Previous work has demonstrated that the hemorheological profile is altered in patients with abdominal obesity and MS, as evidenced for example by increased whole blood viscosity. To date, however, no studies have examined red blood cell (RBC) deformability of blood from individuals with obesity or metabolic abnormalities under typical physiological flow conditions. In this study, we pumped RBCs through a constriction in a microfluidic device and used high speed video to visualize and track the mechanical behavior of ~8,000 RBCs obtained from either healthy individuals (n = 5) or obese participants with metabolic abnormalities (OMA) (n = 4). We demonstrate that the OMA+ cells stretched on average about 25% less than the healthy controls. Furthermore, we examined the effects of ingesting a high-fat meal on RBC mechanical dynamics, and found that the postprandial period has only a weak effect on the stretching dynamics exhibited by OMA+ cells. The results suggest that chronic rigidification of RBCs plays a key role in the increased blood pressure and increased whole blood viscosity observed in OMA individuals and was independent of an acute response triggered by consumption of a high-fat meal
General treatment of isocurvature perturbations and non-Gaussianities
We present a general formalism that provides a systematic computation of the
linear and non-linear perturbations for an arbitrary number of cosmological
fluids in the early Universe going through various transitions, in particular
the decay of some species (such as a curvaton or a modulus). Using this
formalism, we revisit the question of isocurvature non-Gaussianities in the
mixed inflaton-curvaton scenario and show that one can obtain significant
non-Gaussianities dominated by the isocurvature mode while satisfying the
present constraints on the isocurvature contribution in the observed power
spectrum. We also study two-curvaton scenarios, taking into account the
production of dark matter, and investigate in which cases significant
non-Gaussianities can be produced.Comment: Substantial improvements with respect to the first version. In
particular, we added a discussion on the confrontation of the models with
future observational data. This version is accepted for publication in JCA
Putting old tensions to rest: Integrating multicultural education and global learning to advance student development
Multicultural education and global learning have long been acknowledged by higher education professionals to be necessary in advancing student development. Both of these agendas overlap in significant ways and can be characterized as two sides of the same coin. Notwithstanding, there has been a historical divide, even a tension between these two elements, that has resulted in their moving on separate tracks towards the same goal of student development. This article discusses a successful approach that uses learning outcomes as the mechanism to integrate these two elements in order to achieve meaningful student development
Nonuniversality of the dispersion interaction: analytic benchmarks for van der Waals energy functionals
We highlight the non-universality of the asymptotic behavior of dispersion
forces, such that a sum of inverse sixth power contributions is often
inadequate. We analytically evaluate the cross-correlation energy Ec between
two pi-conjugated layers separated by a large distance D within the
electromagnetically non-retarded Random Phase Approximation, via a
tight-binding model. For two perfect semimetallic graphene sheets at T=0K we
find Ec = C D^{-3}, in contrast to the "insulating" D^{-4} dependence predicted
by currently accepted approximations. We also treat the case where one graphene
layer is replaced by a thin metal, a model relevant to the exfoliation of
graphite. Our general considerations also apply to nanotubes, nanowires and
layered metals.Comment: 4 pages, 0 fig
Enhanced dispersion interaction between quasi-one dimensional conducting collinear structures
Recent investigations have highlighted the failure of a sum of terms
to represent the dispersion interaction in parallel metallic, anisotropic,
linear or planar nanostructures [J. F. Dobson, A. White, and A. Rubio, Phys.
Rev. Lett. 96, 073201 (2006) and references therein]. By applying a simple
coupled plasmon approach and using electron hydrodynamics, we numerically
evaluate the dispersion (non-contact van der Waals) interaction between two
conducting wires in a collinear pointing configuration. This case is compared
to that of two insulating wires in an identical geometry, where the dispersion
interaction is modelled both within a pairwise summation framework, and by
adding a pinning potential to our theory leading to a standard oscillator-type
model of insulating dielectric behavior. Our results provide a further example
of enhanced dispersion interaction between two conducting nanosystems compared
to the case of two insulating ones. Unlike our previous work, this calculation
explores a region of relatively close coupling where, although the electronic
clouds do not overlap, we are still far from the asymptotic region where a
single power law describes the dispersion energy. We find that strong
differences in dispersion attraction between metallic and semiconducting /
insulating cases persist into this non-asymptotic region. While our theory will
need to be supplemented with additional short-ranged terms when the electronic
clouds overlap, it does not suffer from the short-distance divergence exhibited
by purely asymptotic theories, and gives a natural saturation of the dispersion
energy as the wires come into contact.Comment: 10 pages, 5 figures. Added new extended numerical calculations, new
figures, extra references and heavily revised tex
- …