23 research outputs found

    Tissue-specific regulation of microvascular diameter: opposite functional roles of neuronal and smooth muscle located vanilloid receptor-1.

    No full text
    The transient receptor potential type V1 channel (vanilloid receptor 1, TRPV1) is a Ca(2+)-permeable nonspecific cation channel activated by various painful stimuli including ischemia. We hypothesized that TRPV1 is expressed in the arterioles and is involved in the regulation of microvascular tone. We found that TRPV1 stimulation by capsaicin (intra-arterial administration) of the isolated, perfused right hind limb of the rat increased vascular resistance (by 98 +/- 21 mm Hg at 10 mug) in association with decreased skeletal muscle perfusion and elevation of skin perfusion (detected by dual-channel laser Doppler flowmetry). Denervation of the hind limb did not affect capsaicin-evoked changes in vascular resistance and tissue perfusion in the hind limb but reduced the elevation of perfusion in the skin. In isolated, pressurized skeletal (musculus gracilis) muscle arterioles (diameter, 147 +/- 35 mum), capsaicin had biphasic effects: at lower concentrations, capsaicin (up to 10 nM) evoked dilations (maximum, 32 +/- 13%), whereas higher concentrations (0.1-1 muM) elicited substantial constrictions (maximum, 66 +/- 7%). Endothelium removal or inhibition of nitric-oxide synthase abolished capsaicin-induced dilations but did not affect arteriolar constriction. Expression of TRPV1 was detected by reverse transcriptase-polymerase chain reaction in the aorta and in cultured rat aortic vascular smooth muscle cells (A7r5). Immunohistochemistry revealed expression primarily in the smooth muscle layers of the gracilis arteriole. These data demonstrate the functional expression of TRPV1 in vascular smooth muscle cells mediating vasoconstriction of the resistance arteries. Because of the dual effects of TRPV1 stimulation on the arteriolar diameter (dilation in skin, constriction in skeletal muscle), we propose that TRPV1 ligands represent drug candidates for tissue-specific modulation of blood distribution

    Mammalian Cells

    No full text
    Cell-type specific gene expression programs are tightly linked to epigenetic modifications on DNA and histone proteins. Here, we used a novel CRISPR-based epigenome editing approach to control gene expression spatially and temporally. We show that targeting dCas9-p300 complex to distal non-regulatory genomic regions reprograms the chromatin state of these regions into enhancer-like elements. Notably, through controlling the spatial distance of these induced enhancers (i-Enhancer) to the promoter, the gene expression amplitude can be tightly regulated. To better control the temporal persistence of induced gene expression, we integrated the auxin-inducible degron technology with CRISPR tools. This approach allows rapid depletion of the dCas9-fused epigenome modifier complex from the target site and enables temporal control over gene expression regulation. Using this tool, we investigated the temporal persistence of a locally edited epigenetic mark and its functional consequences. The tools and approaches presented here will allow novel insights into the mechanism of epigenetic memory and gene regulation from distal regulatory sites. (C) 2018 Published by Elsevier Ltd.C1 [Kuscu, Cem; Mammeadov, Rashad; Czikora, Agnes; Tufan, Turan; Fischer, Natasha Lopes; Bekiranov, Stefan; Adli, Mazhar] Univ Virginia, Sch Med, Dept Biochem & Mol Genet, Charlottesville, VA 22908 USA.[Arslan, Sevki] Pamukkale Univ, Dept Biol, TR-20160 Denizli, Turkey.[Kanemaki, Masato] Natl Inst Genet, Mishima, Sizuoka 4118540, Japan.[Kanemaki, Masato] SOKENDAI, Mishima, Sizuoka 4118540, Japan.[Kanemaki, Masato] Japan Sci & Technol Agcy, PRESTO, Kawaguchi, Saitama 3320012, Japan.[Unlu, Hayrunnisa] Ankara Univ, Sch Med, TR-06560 Ankara, Turkey

    Temporal and Spatial Epigenome Editing Allows Precise Gene Regulation in Mammalian Cells.

    No full text
    Cell-type specific gene expression programs are tightly linked to epigenetic modifications on DNA and histone proteins. Here, we used a novel CRISPR-based epigenome editing approach to control gene expression spatially and temporally. We show that targeting dCas9-p300 complex to distal non-regulatory genomic regions reprograms the chromatin state of these regions into enhancer-like elements. Notably, through controlling the spatial distance of these induced enhancers (i-Enhancer) to the promoter, the gene expression amplitude can be tightly regulated. To better control the temporal persistence of induced gene expression, we integrated the auxin-inducible degron technology with CRISPR tools. This approach allows rapid depletion of the dCas9-fused epigenome modifier complex from the target site and enables temporal control over gene expression regulation. Using this tool, we investigated the temporal persistence of a locally edited epigenetic mark and its functional consequences. The tools and approaches presented here will allow novel insights into the mechanism of epigenetic memory and gene regulation from distal regulatory sites

    α‑Arylidene Diacylglycerol-Lactones (DAG-Lactones) as Selective Ras Guanine-Releasing Protein 3 (RasGRP3) Ligands

    No full text
    Diacylglycerol-lactones have proven to be a powerful template for the design of potent ligands targeting C1 domains, the recognition motif for the cellular second messenger diacylglycerol. A major objective has been to better understand the structure activity relations distinguishing the seven families of signaling proteins that contain such domains, of which the protein kinase C (PKC) and RasGRP families are of particular interest. Here, we synthesize a series of aryl- and alkyl-substituted diacylglycerol-lactones and probe their relative selectivities for RasGRP3 versus PKC. Compound <b>96</b> showed 73-fold selectivity relative to PKCα and 45-fold selectivity relative to PKCε for in vitro binding activity. Likewise, in intact cells, compound <b>96</b> induced Ras activation, a downstream response to RasGRP stimulation, with 8–29 fold selectivity relative to PKCδ S299 phosphorylation, a measure of PKCδ stimulation

    Automated detection and measurement of isolated retinal arterioles by a combination of edge enhancement and cost analysis

    Get PDF
    Pressure myography studies have played a crucial role in our understanding of vascular physiology and pathophysiology. Such studies depend upon the reliable measurement of changes in the diameter of isolated vessel segments over time. Although several software packages are available to carry out such measurements on small arteries and veins, no such software exists to study smaller vessels (<50 µm in diameter). We provide here a new, freely available open-source algorithm, MyoTracker, to measure and track changes in the diameter of small isolated retinal arterioles. The program has been developed as an ImageJ plug-in and uses a combination of cost analysis and edge enhancement to detect the vessel walls. In tests performed on a dataset of 102 images, automatic measurements were found to be comparable to those of manual ones. The program was also able to track both fast and slow constrictions and dilations during intraluminal pressure changes and following application of several drugs. Variability in automated measurements during analysis of videos and processing times were also investigated and are reported. MyoTracker is a new software to assist during pressure myography experiments on small isolated retinal arterioles. It provides fast and accurate measurements with low levels of noise and works with both individual images and videos. Although the program was developed to work with small arterioles, it is also capable of tracking the walls of other types of microvessels, including venules and capillaries. It also works well with larger arteries, and therefore may provide an alternative to other packages developed for larger vessels when its features are considered advantageous

    Protective effect of Growth Hormone-Releasing Hormone agonist in bacterial toxin-induced pulmonary barrier dysfunction

    Get PDF
    Rationale: Antibiotic treatment of patients infected with G(−) or G(+) bacteria promotes release of the toxins lipopolysaccharide (LPS) and pneumolysin (PLY) in their lungs. Growth Hormone-releasing Hormone (GHRH) agonist JI-34 protects human lung microvascular endothelial cells (HL-MVEC), expressing splice variant 1 (SV-1) of the receptor, from PLY-induced barrier dysfunction. We investigated whether JI-34 also blunts LPS-induced hyperpermeability. Since GHRH receptor (GHRH-R) signaling can potentially stimulate both cAMP-dependent barrier-protective pathways as well as barrier-disruptive protein kinase C pathways, we studied their interaction in GHRH agonist-treated HL-MVEC, in the presence of PLY, by means of siRNA-mediated protein kinase A (PKA) depletion. Methods: Barrier function measurements were done in HL-MVEC monolayers using Electrical Cell substrate Impedance Sensing (ECIS) and VE-cadherin expression by Western blotting. Capillary leak was assessed by Evans Blue dye (EBD) incorporation. Cytokine generation in broncho-alveolar lavage fluid (BALF) was measured by multiplex analysis. PKA and PKC-α activity were assessed by Western blotting. Results: GHRH agonist JI-34 significantly blunts LPS-induced barrier dysfunction, at least in part by preserving VE-cadherin expression, while not affecting inflammation. In addition to activating PKA, GHRH agonist also increases PKC-α activity in PLY-treated HL-MVEC. Treatment with PLY significantly decreases resistance in control siRNA-treated HL-MVEC, but does so even more in PKA-depleted monolayers. Pretreatment with GHRH agonist blunts PLY-induced permeability in control siRNA-treated HL-MVEC, but fails to improve barrier function in PKA-depleted PLY-treated monolayers. Conclusions: GHRH signaling in HL-MVEC protects from both LPS and PLY-mediated endothelial barrier dysfunction and concurrently induces a barrier-protective PKA-mediated and a barrier-disruptive PKC-α-induced pathway in the presence of PLY, the former of which dominates the latter

    The TNF-derived TIP peptide activates the epithelial sodium channel and ameliorates experimental nephrotoxic serum nephritis

    No full text
    Background: Cardiomyopathies are a rare cause of pediatric heart disease, but they are one of the leading causes of heart failure admissions, sudden death, and need for heart transplant in childhood. Reports from the Pediatric Cardiomyopathy Registry (PCMR) have shown that almost 40% of children presenting with symptomatic cardiomyopathy either die or undergo heart transplant within 2 years of presentation. Little is known regarding circulating biomarkers as predictors of outcome in pediatric cardiomyopathy. Study Design: The Cardiac Biomarkers in Pediatric Cardiomyopathy (PCM Biomarkers) study is a multi-center prospective study conducted by the PCMR investigators to identify serum biomarkers for predicting outcome in children with dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM). Patients less than 21 years of age with either DCM or HCM were eligible. Those with DCM were enrolled into cohorts based on time from cardiomyopathy diagnosis: categorized as new onset or chronic. Clinical endpoints included sudden death and progressive heart failure. Results: There were 288 children diagnosed at a mean age of 7.2±6.3 years who enrolled in the PCM Biomarkers Study at a median time from diagnosis to enrollment of 1.9 years. There were 80 children enrolled in the new onset DCM cohort, defined as diagnosis at or 12 months prior to enrollment. The median age at diagnosis for the new onset DCM was 1.7 years and median time from diagnosis to enrollment was 0.1 years. There were 141 children enrolled with either chronic DCM or chronic HCM, defined as children ≥2 years from diagnosis to enrollment. Among children with chronic cardiomyopathy, median age at diagnosis was 3.4 years and median time from diagnosis to enrollment was 4.8 years. Conclusion: The PCM Biomarkers study is evaluating the predictive value of serum biomarkers to aid in the prognosis and management of children with DCM and HCM. The results will provide valuable information where data are lacking in children. Clinical Trial Registration: NCT01873976 https://clinicaltrials.gov/ct2/show/NCT01873976?term=PCM+Biomarker&rank=

    Epithelial Sodium Channel-α Mediates the Protective Effect of the TNF-Derived TIP Peptide in Pneumolysin-Induced Endothelial Barrier Dysfunction

    No full text
    BackgroundStreptococcus pneumoniae is a major etiologic agent of bacterial pneumonia. Autolysis and antibiotic-mediated lysis of pneumococci induce release of the pore-forming toxin, pneumolysin (PLY), their major virulence factor, which is a prominent cause of acute lung injury. PLY inhibits alveolar liquid clearance and severely compromises alveolar–capillary barrier function, leading to permeability edema associated with pneumonia. As a consequence, alveolar flooding occurs, which can precipitate lethal hypoxemia by impairing gas exchange. The α subunit of the epithelial sodium channel (ENaC) is crucial for promoting Na+ reabsorption across Na+-transporting epithelia. However, it is not known if human lung microvascular endothelial cells (HL-MVEC) also express ENaC-α and whether this subunit is involved in the regulation of their barrier function.MethodsThe presence of α, β, and γ subunits of ENaC and protein phosphorylation status in HL-MVEC were assessed in western blotting. The role of ENaC-α in monolayer resistance of HL-MVEC was examined by depletion of this subunit by specific siRNA and by employing the TNF-derived TIP peptide, a specific activator that directly binds to ENaC-α.ResultsHL-MVEC express all three subunits of ENaC, as well as acid-sensing ion channel 1a (ASIC1a), which has the capacity to form hybrid non-selective cation channels with ENaC-α. Both TIP peptide, which specifically binds to ENaC-α, and the specific ASIC1a activator MitTx significantly strengthened barrier function in PLY-treated HL-MVEC. ENaC-α depletion significantly increased sensitivity to PLY-induced hyperpermeability and in addition, blunted the protective effect of both the TIP peptide and MitTx, indicating an important role for ENaC-α and for hybrid NSC channels in barrier function of HL-MVEC. TIP peptide blunted PLY-induced phosphorylation of both calmodulin-dependent kinase II (CaMKII) and of its substrate, the actin-binding protein filamin A (FLN-A), requiring the expression of both ENaC-α and ASIC1a. Since non-phosphorylated FLN-A promotes ENaC channel open probability and blunts stress fiber formation, modulation of this activity represents an attractive target for the protective actions of ENaC-α in both barrier function and liquid clearance.ConclusionOur results in cultured endothelial cells demonstrate a previously unrecognized role for ENaC-α in strengthening capillary barrier function that may apply to the human lung. Strategies aiming to activate endothelial NSC channels that contain ENaC-α should be further investigated as a novel approach to improve barrier function in the capillary endothelium during pneumonia
    corecore