228 research outputs found
Identification of Electron Donor States in N-doped Carbon Nanotubes
Nitrogen doped carbon nanotubes have been synthesized using pyrolysis and
characterized by Scanning Tunneling Spectroscopy and transmission electron
microscopy. The doped nanotubes are all metallic and exhibit strong electron
donor states near the Fermi level. Using tight-binding and ab initio
calculations, we observe that pyridine-like N structures are responsible for
the metallic behavior and the prominent features near the Fermi level. These
electron rich structures are the first example of n-type nanotubes, which could
pave the way to real molecular hetero-junction devices.Comment: 5 pages, 4 figures, revtex, submitted to PR
Force and energy dissipation variations in non-contact atomic force spectroscopy on composite carbon nanotube systems
UHV dynamic force and energy dissipation spectroscopy in non-contact atomic
force microscopy were used to probe specific interactions with composite
systems formed by encapsulating inorganic compounds inside single-walled carbon
nanotubes. It is found that forces due to nano-scale van der Waals interaction
can be made to decrease by combining an Ag core and a carbon nanotube shell in
the Ag@SWNT system. This specific behaviour was attributed to a significantly
different effective dielectric function compared to the individual
constituents, evaluated using a simple core-shell optical model. Energy
dissipation measurements showed that by filling dissipation increases,
explained here by softening of C-C bonds resulting in a more deformable
nanotube cage. Thus, filled and unfilled nanotubes can be discriminated based
on force and dissipation measurements. These findings have two different
implications for potential applications: tuning the effective optical
properties and tuning the interaction force for molecular absorption by
appropriately choosing the filling with respect to the nanotube.Comment: 22 pages, 6 figure
Chemically active substitutional nitrogen impurity in carbon nanotubes
We investigate the nitrogen substitutional impurity in semiconducting zigzag
and metallic armchair single-wall carbon nanotubes using ab initio density
functional theory. At low concentrations (less than 1 atomic %), the defect
state in a semiconducting tube becomes spatially localized and develops a flat
energy level in the band gap. Such a localized state makes the impurity site
chemically and electronically active. We find that if two neighboring tubes
have their impurities facing one another, an intertube covalent bond forms.
This finding opens an intriguing possibility for tunnel junctions, as well as
the functionalization of suitably doped carbon nanotubes by selectively forming
chemical bonds with ligands at the impurity site. If the intertube bond density
is high enough, a highly packed bundle of interlinked single-wall nanotubes can
form.Comment: 4 pages, 4 figures; major changes to the tex
Assessment of Pain, Acceptance of Illness, Adjustment to Life and Strategies of Coping with the Illness in Patients with Pancreatic Cancer
Pancreatic cancer is the fourth most common cancer causing death in the world. The prognosis of patients with pancreatic cancer is relatively low, which may be reflected in the patients’ lack of acceptance of the illness and passive attitudes towards the illness. The aim of the study was to evaluate the strategy of coping with pain and its control, acceptance of the illness and adjustment to life with cancer in patients suffering from pancreatic cancer. Forty-six patients with pancreatic cancer were included in the study. They were treated as outpatients at the Center of Oncology at Maria Skłodowska-Curie’s Institute in Warsaw between 2017 and 2018. The questionnaire included four psychometric tests: BPCQ, CSQ, AIS and MiniMAC. In the BPCQ test the highest average test result was obtained by “internal factors” (M = 16.85; SD = 5.64). The most frequently chosen strategies for coping with pain are praying/hoping (M = 22.33; SD = 7.85). The average illness acceptance score was 23.13 (SD = 7.84). The most common methods of psychological adjustment to cancer for the studied group are the strategies of positive re-evaluation (M = 20.07, SD = 3.67). Patients with pancreatic cancer have a low level of acceptance of their illness
Radius and chirality dependent conformation of polymer molecule at nanotube interface
Temperature dependent conformations of linear polymer molecules adsorbed at
carbon nanotube (CNT) interfaces are investigated through molecule dynamics
simulations. Model polyethylene (PE) molecules are shown to have selective
conformations on CNT surface, controlled by atomic structures of CNT lattice
and geometric coiling energy. PE molecules form entropy driven assembly
domains, and their preferred wrapping angles around large radius CNT (40, 40)
reflect the molecule configurations with energy minimums on a graphite plane.
While PE molecules prefer wrapping on small radius armchair CNT (5, 5)
predominantly at low temperatures, their configurations are shifted to larger
wrapping angle ones on a similar radius zigzag CNT (10, 0). A nematic
transformation around 280 K is identified through Landau-deGennes theory, with
molecule aligning along tube axis in extended conformationsComment: 19 pages, 7 figure2, submitted to journa
Thermochemistry of Alane Complexes for Hydrogen Storage: A Theoretical and Experimental Comparison
Knowledge of the relative stabilities of alane (AlH3) complexes with electron
donors is essential for identifying hydrogen storage materials for vehicular
applications that can be regenerated by off-board methods; however, almost no
thermodynamic data are available to make this assessment. To fill this gap, we
employed the G4(MP2) method to determine heats of formation, entropies, and
Gibbs free energies of formation for thirty-eight alane complexes with NH3-nRn
(R = Me, Et; n = 0-3), pyridine, pyrazine, triethylenediamine (TEDA),
quinuclidine, OH2-nRn (R = Me, Et; n = 0-2), dioxane, and tetrahydrofuran
(THF). Monomer, bis, and selected dimer complex geometries were considered.
Using these data, we computed the thermodynamics of the key formation and
dehydrogenation reactions that would occur during hydrogen delivery and alane
regeneration, from which trends in complex stability were identified. These
predictions were tested by synthesizing six amine-alane complexes involving
trimethylamine, triethylamine, dimethylethylamine, TEDA, quinuclidine, and
hexamine, and obtaining upper limits of delta G for their formation from
metallic aluminum. Combining these computational and experimental results, we
establish a criterion for complex stability relevant to hydrogen storage that
can be used to assess potential ligands prior to attempting synthesis of the
alane complex. Based on this, we conclude that only a subset of the tertiary
amine complexes considered and none of the ether complexes can be successfully
formed by direct reaction with aluminum and regenerated in an alane-based
hydrogen storage system.Comment: Accepted by the Journal of Physical Chemistry
Academic librarians serving diverse populations of multilingual students
A group of academic librarians working in community and four-year colleges, graduate programs and other settings present strategies and approaches for serving diverse multilingual populations. Multilingual students improve their awareness and understanding of United States academic libraries and higher education when librarians are cognizant of their needs. Encounters can occur at the research desk, in classroom instruction, and during research consultations. Also included are tips on how academic librarians can assist multilingual and international students, including how to improve communication. Based on an ACRL 2019 panel discussion of the same title
Atomic Configuration of Nitrogen Doped Single-Walled Carbon Nanotubes
Having access to the chemical environment at the atomic level of a dopant in
a nanostructure is crucial for the understanding of its properties. We have
performed atomically-resolved electron energy-loss spectroscopy to detect
individual nitrogen dopants in single-walled carbon nanotubes and compared with
first principles calculations. We demonstrate that nitrogen doping occurs as
single atoms in different bonding configurations: graphitic-like and
pyrrolic-like substitutional nitrogen neighbouring local lattice distortion
such as Stone-Thrower-Wales defects. The stability under the electron beam of
these nanotubes has been studied in two extreme cases of nitrogen incorporation
content and configuration. These findings provide key information for the
applications of these nanostructures.Comment: 25 pages, 13 figure
- …