We investigate the nitrogen substitutional impurity in semiconducting zigzag
and metallic armchair single-wall carbon nanotubes using ab initio density
functional theory. At low concentrations (less than 1 atomic %), the defect
state in a semiconducting tube becomes spatially localized and develops a flat
energy level in the band gap. Such a localized state makes the impurity site
chemically and electronically active. We find that if two neighboring tubes
have their impurities facing one another, an intertube covalent bond forms.
This finding opens an intriguing possibility for tunnel junctions, as well as
the functionalization of suitably doped carbon nanotubes by selectively forming
chemical bonds with ligands at the impurity site. If the intertube bond density
is high enough, a highly packed bundle of interlinked single-wall nanotubes can
form.Comment: 4 pages, 4 figures; major changes to the tex