159 research outputs found

    Biotechnological synthesis of 1,3-propanediol using Clostridium ssp.

    Get PDF
    1,3-Propanediol (PD) is an important chemical product which can be used for synthesis reactions, in particular, as a monomer for polycondensations to produce polyesters, polyethers and polyurethanes. It is produced by two methods, chemical synthesis and microbial conversion. Recently, the increasing interest in microbial conversion was observed. Glycerol is used as a substrate in this process and it may be fermented to 1,3-PD by, among others, Citrobacter ssp., Klebsiella ssp., Lactobacillus ssp., Enterobacter ssp. and Clostridium ssp. strains. The process of microbiological bioconversion pathway of glycerol to 1,3-PD is well known for a long time but microorganisms taking part in this fermentation are pathogenic. Thus, natural producers of 1,3-PD that are non-pathogenic and efficient enough, are still sought. This review deals with the case of 1,3-PD production and microbial formation of 1,3-PD, especially by Clostridium ssp. Moreover, it presents genetic engineering methods used in increasing microorganisms’ efficiency in the glycerol to 1,3 PD fermentation.Key words: 1,3-Propanediol, Clostridium ssp., fermentation, glycerol

    Droplet size classification of air induction flat fan nozzles

    Get PDF
    Measurements were made of the droplet size for a series of air induction flat fan nozzles produced by Marian Mikołajczak Agro Technology (MMAT) and Coorstek. The MMAT nozzles, according to International Organization for Standardization (ISO) standard sizes, are typical single jet (long body, 37 mm) with 025, 03, and 04 orifice sizes; (short body, 21 mm) with 02, 025, 03 and 04 orifice sizes; and twin jet (short body, 21 mm) with 03 and 04 orifice sizes. Ceramic air induction flat fan nozzles of the Albuz AVI series (Coorstek, France) with the orifice size 01, 02 and 03 were tested. The sprays were described using the following droplet size parameters: D, D , D, relative span (RS), spray volume (%) in size fractions < 100 μm and 100÷200 μm. The sprays were also classified according to American Society of Agricultural Engineers (ASAE) standard S572.1 (ASAE 2009)

    Application of Electrochemical Methods in Biosensing Technologies

    Get PDF
    Introducing biochemical factor to electronic devices have created a new branch of science. Recent development in biosensing technology enabled progress in pathogens detection. Currently, wide range of biomarkers (enzymes, peptides, DNA, microorganisms, etc. )recognize various target analytes, starting from basic metabolism changes to serious infections caused by pathogens. Improved sensitivity, selectivity and response time of sensors have instantly replaced traditional techniques. Easy handling, low production costs and miniaturization have met therapeutics need. Biosensing technologies are very strong point in telemedicine in public healthcare. This chapter will focus on electrochemical techniques for pathogens detection and show trending applications in biosensing technologies
    corecore