8 research outputs found

    Butyrate acts through HDAC inhibition to enhance aryl hydrocarbon receptor activation by gut microbiota-derived ligands

    No full text
    Aryl hydrocarbon receptor (AhR) is a critical player in the crosstalk between the gut microbiota and its host. However, factors regulating AhR within the gut, which is a complex metabolomic environment, are poorly understood. This study investigates the effect of a combination of metabolites on the activation mechanism of AhR. AhR activity was evaluated using both a luciferase reporter system and mRNA levels of AhR target genes on human cell lines and human colonic explants. AhR activation was studied by radioligand-binding assay, nuclear translocation of AhR by immuofluorescence and protein co-immunoprecipitation of AhR with ARNT. Indirect activation of AhR was evaluated using several tests and inhibitors. The promoter of the target gene CYP1A1 was studied both by chromatin immunoprecipitation and by using an histone deacetylase HDAC inhibitor (iHDAC). Short-chain fatty acids, and butyrate in particular, enhance AhR activity mediated by endogenous tryptophan metabolites without binding to the receptor. This effect was confirmed in human intestinal explants and did not rely on activation of receptors targeted by SCFAs, inhibition of AhR degradation or clearance of its ligands. Butyrate acted directly on AhR target gene promoter to reshape chromatin through iHDAC activity. Our findings revealed that butyrate is not an AhR ligand but acts as iHDAC leading to an increase recruitment of AhR to the target gene promoter in the presence of tryptophan-derived AhR agonists. These data contribute to a novel understanding of the complex regulation of AhR activation by gut microbiota-derived metabolites

    Gut microbiota alterations are associated with phenotype and genotype in familial Mediterranean fever

    No full text
    International audienceAbstract Objective FMF is the most common monogenic autoinflammatory disease associated with MEFV mutations. Disease phenotype and response to treatment vary from one patient to another, despite similar genotype, suggesting the role of environmental factors. The objective of this study was to analyse the gut microbiota of a large cohort of FMF patients in relation to disease characteristics. Methods The gut microbiotas of 119 FMF patients and 61 healthy controls were analysed using 16 s rRNA gene sequencing. Associations between bacterial taxa, clinical characteristics, and genotypes were evaluated using multivariable association with linear models (MaAslin2), adjusting on age, sex, genotype, presence of AA amyloidosis (n = 17), hepatopathy (n = 5), colchicine intake, colchicine resistance (n = 27), use of biotherapy (n = 10), CRP levels, and number of daily faeces. Bacterial network structures were also analysed. Results The gut microbiotas of FMF patients differ from those of controls in having increased pro-inflammatory bacteria, such as the Enterobacter, Klebsiella and Ruminococcus gnavus group. Disease characteristics and resistance to colchicine correlated with homozygous mutations and were associated with specific microbiota alteration. Colchicine treatment was associated with the expansion of anti-inflammatory taxa such as Faecalibacterium and Roseburia, while FMF severity was associated with expansion of the Ruminococcus gnavus group and Paracoccus. Colchicine-resistant patients exhibited an alteration of the bacterial network structure, with decreased intertaxa connectivity. Conclusion The gut microbiota of FMF patients correlates with disease characteristics and severity, with an increase in pro-inflammatory taxa in the most severe patients. This suggests a specific role for the gut microbiota in shaping FMF outcomes and response to treatment

    Human CD4+/CD8α+ regulatory T cells induced by Faecalibacterium prausnitzii protect against intestinal inflammation

    No full text
    International audienceFaecalibacterium prausnitzii (F. prausnitzii), a dominant bacterium of the human microbiota, is decreased in patients with inflammatory bowel diseases (IBD) and exhibits anti-inflammatory effects. In human, colonic lamina propria contains IL-10-secreting, Foxp3-negative regulatory T cells (Treg) characterized by a double expression of CD4 and CD8α (DP8α) and a specificity for F. prausnitzii. This Treg subset is decreased in IBD. The in vivo effect of DP8α cells has not been evaluated yet. Here, using a humanized model of NOD.Prkcscid IL2rγ-/- (NSG) immunodeficient mouse strain that expresses the human leucocyte antigen D-related allele HLA-DR*0401 but not murine class II (NSG-Ab° DR4) molecules, we demonstrated a protective effect of a HLA-DR*0401-restricted DP8α Treg clone combined with F. prausnitzii administration in a colitis model. In a cohort of patients with IBD, we showed an independent association between the frequency of circulating DP8α cells and disease activity. Finally, we pointed out a positive correlation between F. prausnitzii-specific DP8α Tregs and the amount of F. prausnitzii in fecal microbiota in healthy individuals and patients with ileal Crohn's disease

    Fecal microbiota and bile acids in IBD patients undergoing screening for colorectal cancer

    No full text
    International audienceDue to the potential role of the gut microbiota and bile acids in the pathogenesis of both inflammatory bowel disease (IBD) and sporadic colorectal cancer, we aimed to determine whether these factors were associated with colorectal cancer in IBD patients. 215 IBD patients and 51 non-IBD control subjects were enrolled from 10 French IBD centers between September 2011 and July 2018. Fecal samples were processed for bacterial 16S rRNA gene sequencing and bile acid profiling. Demographic, clinical, endoscopic, and histological outcomes were recorded. Characteristics of IBD patients included: median age: 41.6 (IQR 22); disease duration 13.2 (13.1); 47% female; 21.9% primary sclerosing cholangitis; 109 patients with Crohn's disease (CD); 106 patients with ulcerative colitis (UC). The prevalence of cancer was 2.8% (6/215: 1 CD; 5 UC), highgrade dysplasia 3.7% (8/215) and low-grade dysplasia 7.9% (17/215). Lachnospira was decreased in IBD patients with cancer, while Agathobacter was decreased and Escherichia-Shigella increased in UC patients with any neoplasia. Bile acids were not associated with cancer or neoplasia. Unsupervised clustering identified three gut microbiota clusters in IBD patients associated with bile acid composition and clinical features, including a higher risk of neoplasia in UC in two clusters when compared to the third (relative risk (RR) 4.07 (95% CI 1.6-10.3, P < .01) and 3.56 (95% CI 1.4-9.2, P < .01)). In this multicentre observational study, a limited number of taxa were associated with neoplasia and exploratory microbiota clusters co-associated with clinical features, including neoplasia risk in UC. Given the very small number of cancers, the robustness of these findings will require assessment and validation in future studies

    SARS-CoV-2 infection in nonhuman primates alters the composition and functional activity of the gut microbiota

    No full text
    International audienceThe current pandemic of coronavirus disease (COVID) 2019 constitutes a global public health issue. Regarding the emerging importance of the gut-lung axis in viral respiratory infections, analysis of the gut microbiota's composition and functional activity during a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection might be instrumental in understanding and controling COVID 19. We used a nonhuman primate model (the macaque), that recapitulates mild COVID-19 symptoms, to analyze the effects of a SARS-CoV-2 infection on dynamic changes of the gut microbiota. 16S rRNA gene profiling and analysis of ÎČ diversity indicated significant changes in the composition of the gut microbiota with a peak at 10-13 days post-infection (dpi). Analysis of bacterial abundance correlation networks confirmed disruption of the bacterial community at 10-13 dpi. Some alterations in microbiota persisted after the resolution of the infection until day 26. Some changes in the relative bacterial taxon abundance associated with infectious parameters. Interestingly, the relative abundance of Acinetobacter (Proteobacteria) and some genera of the Ruminococcaceae family (Firmicutes) was positively correlated with the presence of SARS-CoV-2 in the upper respiratory tract. Targeted quantitative metabolomics indicated a drop in short-chain fatty acids (SCFAs) and changes in several bile acids and tryptophan metabolites in infected animals. The relative abundance of several taxa known to be SCFA producers (mostly from the Ruminococcaceae family) was negatively correlated with systemic inflammatory markers while the opposite correlation was seen with several members of the genus Streptococcus. Collectively, SARS-CoV-2 infection in a nonhuman primate is associated with changes in the gut microbiota's composition and functional activity

    CARD9 in neutrophils protects from colitis and controls mitochondrial metabolism and cell survival

    No full text
    International audienceObjectives Inflammatory bowel disease (IBD) results from a combination of genetic predisposition, dysbiosis of the gut microbiota and environmental factors, leading to alterations in the gastrointestinal immune response and chronic inflammation. Caspase recruitment domain 9 ( Card9 ), one of the IBD susceptibility genes, has been shown to protect against intestinal inflammation and fungal infection. However, the cell types and mechanisms involved in the CARD9 protective role against inflammation remain unknown. Design We used dextran sulfate sodium (DSS)-induced and adoptive transfer colitis models in total and conditional CARD9 knock-out mice to uncover which cell types play a role in the CARD9 protective phenotype. The impact of Card9 deletion on neutrophil function was assessed by an in vivo model of fungal infection and various functional assays, including endpoint dilution assay, apoptosis assay by flow cytometry, proteomics and real-time bioenergetic profile analysis (Seahorse). Results Lymphocytes are not intrinsically involved in the CARD9 protective role against colitis. CARD9 expression in neutrophils, but not in epithelial or CD11c+cells, protects against DSS-induced colitis. In the absence of CARD9, mitochondrial dysfunction increases mitochondrial reactive oxygen species production leading to the premature death of neutrophilsthrough apoptosis, especially in oxidative environment. The decreased functional neutrophils in tissues might explain the impaired containment of fungi and increased susceptibility to intestinal inflammation. Conclusion These results provide new insight into the role of CARD9 in neutrophil mitochondrial function and its involvement in intestinal inflammation, paving the way for new therapeutic strategies targeting neutrophils

    CARD9 in Neutrophils Protects from Colitis and Controls Mitochondrial Metabolism and Cell Survival

    No full text
    Inflammatory bowel disease (IBD) results from a combination of genetic predisposition, dysbiosis of the gut microbiota and environmental factors, leading to alterations in the gastrointestinal immune response and chronic inflammation. Caspase recruitment domain 9 (Card9), one of the IBD susceptibility genes, has been shown to protect against intestinal inflammation and fungal infection. However, the cell types and mechanisms involved in the CARD9 protective role against inflammation remain unknown.We used dextran sulfate sodium (DSS)-induced and adoptive transfer colitis models in total and conditional CARD9 knock-out mice to uncover which cell types play a role in the CARD9 protective phenotype. The impact of Card9 deletion on neutrophil function was assessed by an in vivo model of fungal infection and various functional assays, including endpoint dilution assay, apoptosis assay by flow cytometry, proteomics and real time bioenergetic profile analysis (Seahorse).Lymphocytes are not intrinsically involved in the CARD9 protective role against colitis. CARD9 expression in neutrophils, but not in epithelial or CD11c+ cells, protects against DSS-induced colitis. In the absence of CARD9, mitochondrial dysfunction in neutrophils leads to their premature death through apoptosis, especially in oxidative environment. The decrease of fonctional neutrophils in tissues could explain the impaired containment of fungi and increased susceptibility to intestinal inflammation.These results provide new insight into the role of CARD9 in neutrophil mitochondrial function and its involvement in intestinal inflammation, paving the way for new therapeutic strategies targeting neutrophils

    Rewiring the altered tryptophan metabolism as a novel therapeutic strategy in inflammatory bowel diseases

    No full text
    International audienceObjective The extent to which tryptophan (Trp) metabolism alterations explain or influence the outcome of inflammatory bowel diseases (IBDs) is still unclear. However, several Trp metabolism end-products are essential to intestinal homeostasis. Here, we investigated the role of metabolites from the kynurenine pathway. Design Targeted quantitative metabolomics was performed in two large human IBD cohorts (1069 patients with IBD). Dextran sodium sulphate-induced colitis experiments in mice were used to evaluate effects of identified metabolites. In vitro, ex vivo and in vivo experiments were used to decipher mechanisms involved. Effects on energy metabolism were evaluated by different methods including Single Cell mEtabolism by profiling Translation inHibition. Results In mice and humans, intestinal inflammation severity negatively correlates with the amount of xanthurenic (XANA) and kynurenic (KYNA) acids. Supplementation with XANA or KYNA decreases colitis severity through effects on intestinal epithelial cells and T cells, involving Aryl hydrocarbon Receptor (AhR) activation and the rewiring of cellular energy metabolism. Furthermore, direct modulation of the endogenous tryptophan metabolism, using the recombinant enzyme aminoadipate aminotransferase (AADAT), responsible for the generation of XANA and KYNA, was protective in rodent colitis models. Conclusion Our study identified a new mechanism linking Trp metabolism to intestinal inflammation and IBD. Bringing back XANA and KYNA has protective effects involving AhR and the rewiring of the energy metabolism in intestinal epithelial cells and CD4 + T cells. This study paves the way for new therapeutic strategies aiming at pharmacologically correcting its alterations in IBD by manipulating the endogenous metabolic pathway with AADAT
    corecore