32 research outputs found
Silver nanoparticles affect germination and photosynthesis in tobacco seedlings
Extensive commercialization of silver nanoparticles (AgNPs) raises the risk of their accumulation in the soil-plant system. Once released into the environment, AgNPs are prone to chemical transformations, which make it hard to determine whether their phytotoxic effects are purely NP-related or a consequence of released Ag+ ions. In this study the effects of 25, 50, 75, 100 and 150 Ī¼M AgNPs and AgNO3 on seed germination and early growth of tobacco (Nicotiana tabacum L.) seedlings were compared. Additionally, the effects on photosynthetic performance and pigment content were investigated. Germination rate and index values indicated delayed and slower germination in some AgNP treatments. Lower AgNP concentrations stimulated root growth, but induced a prominent reduction in fresh weight. By contrast, all AgNO3 concentrations inhibited root growth but only the higher ones decreased fresh weight. Obtained results imply that the observed AgNP toxicity could be ascribed to NP form and can be correlated with high AgNP stability in the solid medium. On the other hand, the majority of AgNP and AgNO3 treatments induced an increase in chlorophyll content that was accompanied by significantly lower values of relative electron transport rate and coefficient of photochemical quenching, implying an inhibition of the electron transport chain. A similar impact of AgNPs and AgNO3 on photosynthesis can be correlated with lower stability of AgNPs in a liquid medium, resulting in AgNP aggregation and dissolution of Ag+ ions
Proteomika u istraživanjima toksiÄnosti teÅ”kih metala u biljaka
Plants endure a variety of abiotic and biotic stresses, all of which cause major limitations to production. Among abiotic stressors, heavy metal contamination represents a global environmental problem endangering humans, animals, and plants. Exposure to heavy metals has been documented to induce changes in the expression of plant proteins. Proteins are macromolecules directly responsible for most biological processes in a living cell, while protein function is directly influenced by posttranslational modifications, which cannot be identified through genome studies. Therefore, it is necessary to conduct proteomic studies, which enable the elucidation of the presence and role of proteins under specific environmental conditions. This review attempts to present current knowledge on proteomic techniques developed with an aim to detect the response of plant to heavy metal stress. Significant contributions to a better understanding of the complex mechanisms of plant acclimation to metal stress are also discussed.Biljke su neprestano izložene razliÄitim Äimbenicima abiotiÄkog i biotiÄkog stresa koji nepovoljno utjeÄu na njihovu produktivnost. TeÅ”ki metali kao Äesti zagaÄivaÄi okoliÅ”a vrlo nepovoljno djeluju na sva živa biÄa, ukljuÄujuÄi biljke, životinje i ljude. Poznato je da teÅ”ki metali mogu mijenjati ekspresiju biljnih proteina. Proteine ubrajamo u bioloÅ”ki vrlo važne makromolekule Äija je aktivnost u stanici izravno ovisna o posttranslacijskim modifikacijama, koje nije moguÄe pratiti na razini genoma. Stoga je nužno provoditi proteomska istraživanja kako bi se razotkrila prisutnost i uloga proteina u razliÄitim vrstama okoliÅ”nog stresa. U ovom radu sažete su razliÄite tehnike i metode istraživanja uÄinaka teÅ”kih metala na biljni proteom, ukljuÄujuÄi i sažet osvrt na složene mehanizme odgovora biljke na stres izazvan teÅ”kim metalima
Proteomika u istraživanjima toksiÄnosti teÅ”kih metala u biljaka
Plants endure a variety of abiotic and biotic stresses, all of which cause major limitations to production. Among abiotic stressors, heavy metal contamination represents a global environmental problem endangering humans, animals, and plants. Exposure to heavy metals has been documented to induce changes in the expression of plant proteins. Proteins are macromolecules directly responsible for most biological processes in a living cell, while protein function is directly influenced by posttranslational modifications, which cannot be identified through genome studies. Therefore, it is necessary to conduct proteomic studies, which enable the elucidation of the presence and role of proteins under specific environmental conditions. This review attempts to present current knowledge on proteomic techniques developed with an aim to detect the response of plant to heavy metal stress. Significant contributions to a better understanding of the complex mechanisms of plant acclimation to metal stress are also discussed.Biljke su neprestano izložene razliÄitim Äimbenicima abiotiÄkog i biotiÄkog stresa koji nepovoljno utjeÄu na njihovu produktivnost. TeÅ”ki metali kao Äesti zagaÄivaÄi okoliÅ”a vrlo nepovoljno djeluju na sva živa biÄa, ukljuÄujuÄi biljke, životinje i ljude. Poznato je da teÅ”ki metali mogu mijenjati ekspresiju biljnih proteina. Proteine ubrajamo u bioloÅ”ki vrlo važne makromolekule Äija je aktivnost u stanici izravno ovisna o posttranslacijskim modifikacijama, koje nije moguÄe pratiti na razini genoma. Stoga je nužno provoditi proteomska istraživanja kako bi se razotkrila prisutnost i uloga proteina u razliÄitim vrstama okoliÅ”nog stresa. U ovom radu sažete su razliÄite tehnike i metode istraživanja uÄinaka teÅ”kih metala na biljni proteom, ukljuÄujuÄi i sažet osvrt na složene mehanizme odgovora biljke na stres izazvan teÅ”kim metalima
Coating-Dependent Effects of Silver Nanoparticles on Tobacco Seed Germination and Early Growth
Silver nanoparticles, AgNPs, are used in a wide range of consumer products because of their excellent antimicrobial properties. AgNPs released into the environment are prone to transformations such as aggregation, oxidation, or dissolution so they are often stabilised by coatings that a ect their physico-chemical properties and change their e ect on living organisms. In this study we investigated the stability of polyvinylpyrrolidone PVP and cetyltrimethylammonium bromide CTAB coated AgNPs in an exposure medium, as well as their e ect on tobacco germination and early growth. AgNP-CTAB was found to be more stable in the solid Murashige and Skoog MS medium compared to AgNP-PVP. The uptake and accumulation of silver in seedlings was equally effcient after exposure to both types of AgNPs. However, AgNP-PVP induced only mild toxicity on seedlings growth, while AgNP-CTAB caused severe negative e ects on all parameters, even compared to AgNO3. Moreover, CTAB coating itself exerted negative e ects on growth. Cysteine addition generally alleviated AgNP-PVP-induced negative e ects, while it failed to improve germination and growth parameters after exposure to AgNP-CTAB. These results suggest that the toxic e ects of AgNP-PVP are mainly a consequence of release of Ag+ ions, while phytotoxicity of AgNP-CTAB can rather be ascribed to surface coating itself
ToksiÄnost talija u humanoj populaciji
Thallium is a naturally occurring trace element, widely distributed in the earthās crust, but at very low concentrations. It does not have a known biological use and does not appear to be an essential element for life. It has been considered one of the most toxic heavy metals.
Occasionally, there are reports on thallium poisoning as results of suicide or murder attempt or accident. The main threat to humans is through occupational exposure, environmental contamination, and accumulation in food, mainly in vegetables grown on contaminated soil. Increasing use in emerging new technologies and demanding high-tech industry constantly raise concern about exposure risk to all living organisms. Thallium is considered a cumulative poison that can cause adverse health effects and degenerative changes in many organs. The effects are the most severe in the nervous system. The exact mechanism of thallium toxicity still remains unknown, although impaired glutathione metabolism, oxidative stress, and disruption
of potassium-regulated homeostasis may play a role. The lack of data about mutagenic, carcinogenic, or teratogenic effects of thallium compounds in humans calls for further research.Talij je u prirodi Å”iroko rasprostranjen teÅ”ki metal, prisutan u vrlo niskim koncentracijama pa ga stoga ubrajamo u elemente u tragovima. BuduÄi da organizmima nije potreban ni u jednoj razvojnoj fazi, ne ubrajamo ga u grupu esencijalnih elemenata. Talij zbog njegovih svojstava ubrajamo meÄu najtoksiÄnije teÅ”ke metale. Povremeno se joÅ” uvijek pojavljuju sluÄajevi u kojima je talij upotrijebljen kao sredstvo za pokuÅ”aj ubojstva, odnosno samoubojstva, ali i sluÄajevi nenamjernog, sluÄajnog trovanja talijem. U danaÅ”nje vrijeme potencijalna o asnost od trovanja talijem postoji zbog profesionalne izloženosti, izbijanja ekoloÅ”ke katastrofe ili zbog akumulacije u hranidbenim lancima, uglavnom zbog uzgoja hrane na oneÄiÅ”Äenom tlu. Sve ÄeÅ”Äa uporaba talija u visokotehnoloÅ”koj industriji kao odgovor na zahtjeve moderne tehnologije neprestano poveÄava rizik od izloženosti svih živih organizama Å”tetnim utjecajima talija u okoliÅ”u.
Talij ima izuzetno negativan uÄinak na razliÄite organske sustave, a osobito na živÄani sustav. Mehanizmi toksiÄnosti talija joÅ” uvijek nisu u potpunosti razjaÅ”njeni, premda važnu ulogu imaju poremeÄaji metabolizma glutationa, oksidativni stres i naruÅ”avanje homeostaze posredovane ionima kalija. Nedostatak podataka o mutagenim, kancerogenim ili teratogenim uÄincima talija i njegovih spojeva u ljudi opravdava buduÄa istraživanja ovog vrlo toksiÄnog metala