25 research outputs found

    Entry of the membrane-containing bacteriophages into their hosts

    Get PDF
    Viruses are biological entities able to replicate only within their host cells. Accordingly, entry into the host is a crucial step of the virus life-cycle. The focus of this study was the entry of bacterial membrane-containing viruses into their host cells. In order to reach the site of replication, the cytoplasm of the host, bacterial viruses have to traverse the host cell envelope, which consists of several distinct layers. Lipid membrane is a common feature among animal viruses but not so frequently observed in bacteriophages. There are three families of icosahedral bacteriophages that contain lipid membranes. These viruses belong to families Cystoviridae, Tectiviridae, and Corticoviridae. During the course of this study the entry mechanisms of phages representing the three viral families were investigated. We employed a range of microbiological, biochemical, molecular biology and microscopy techniques that allowed us to dissect phage entry into discrete steps: receptor binding, penetration through the outer membrane, crossing the peptidoglycan layer and interaction with the cytoplasmic membrane. We determined that bacteriophages belonging to the Cystoviridae, Tectiviridae, and Corticoviridae viral families use completely different strategies to penetrate into their host cells.Ei saatavill

    Evolution of an archaeal virus nucleocapsid protein from the CRISPR-associated Cas4 nuclease

    No full text
    International audienceMany proteins of viruses infecting hyperthermophilic Crenarchaeota have no detectable homologs in current databases, hampering our understanding of viral evolution. We used sensitive database search methods and structural modeling to show that a nucleocapsid protein (TP1) of Thermoproteus tenax virus 1 (TTV1) is a derivative of the Cas4 nuclease, a component of the CRISPR-Cas adaptive immunity system that is encoded also by several archaeal viruses. In TTV1, the Cas4 gene was split into two, with the N-terminal portion becoming TP1, and lost some of the catalytic amino acid residues, apparently resulting in the inactivation of the nuclease. To our knowledge, this is the first described case of exaptation of an enzyme for a virus capsid protein function

    Archaeal bundling pili of Pyrobaculum calidifontis reveal similarities between archaeal and bacterial biofilms

    No full text
    International audienceWhile biofilms formed by bacteria have received great attention due to their importance in pathogenesis, much less research has been focused on the biofilms formed by archaea. It has been known that extracellular filaments in archaea, such as type IV pili, hami, and cannulae, play a part in the formation of archaeal biofilms. We have used cryo-electron microscopy to determine the atomic structure of a previously uncharacterized class of archaeal surface filaments from hyperthermophilic Pyrobaculum calidifontis. These filaments, which we call archaeal bundling pili (ABP), assemble into highly ordered bipolar bundles. The bipolar nature of these bundles most likely arises from the association of filaments from at least two different cells. The component protein, AbpA, shows homology, both at the sequence and structural level, to the bacterial protein TasA, a major component of the extracellular matrix in bacterial biofilms, contributing to biofilm stability. We show that AbpA forms very stable filaments in a manner similar to the donor-strand exchange of bacterial TasA fibers and chaperone-usher pathway pili where a ÎČ-strand from one subunit is incorporated into a ÎČ-sheet of the next subunit. Our results reveal likely mechanistic similarities and evolutionary connection between bacterial and archaeal biofilms, and suggest that there could be many other archaeal surface filaments that are as yet uncharacterized

    Viruses of archaea: Structural, functional, environmental and evolutionary genomics

    No full text
    International audienceViruses of archaea represent one of the most enigmatic parts of the virosphere. Most of the characterized archaeal viruses infect extremophilic hosts and display remarkable diversity of virion morphotypes, many of which have never been observed among viruses of bacteria or eukaryotes. The uniqueness of the virion morphologies is matched by the distinctiveness of the genomes of these viruses, with ∌75% of genes encoding unique proteins, refractory to functional annotation based on sequence analyses. In this review, we summarize the state-of-the-art knowledge on various aspects of archaeal virus genomics. First, we outline how structural and functional genomics efforts provided valuable insights into the functions of viral proteins and revealed intricate details of the archaeal virus-host interactions. We then highlight recent metagenomics studies, which provided a glimpse at the diversity of uncultivated viruses associated with the ubiquitous archaea in the oceans, including Thaumarchaeota, Marine Group II Euryarchaeota, and others. These findings, combined with the recent discovery that archaeal viruses mediate a rapid turnover of thaumarchaea in the deep sea ecosystems, illuminate the prominent role of these viruses in the biosphere. Finally, we discuss the origins and evolution of archaeal viruses and emphasize the evolutionary relationships between viruses and non-viral mobile genetic elements. Further exploration of the archaeal virus diversity as well as functional studies on diverse virus-host systems are bound to uncover novel, unexpected facets of the archaeal virome

    Extracellular membrane vesicles and nanotubes in Archaea

    No full text
    International audienceMembrane-bound extracellular vesicles (EVs) are secreted by cells from all three domains of life and their implication in various biological processes is increasingly recognized. In this review, we summarize the current knowledge on archaeal EVs and nanotubes, and emphasize their biological significance. In archaea, the EVs and nanopods have been largely studied in representative species from the phyla Crenarchaeota and Euryarchaeaota. The archaeal EVs have been linked to several physiological processes such as detoxification, biomineralization and transport of biological molecules, including chromosomal, viral or plasmid DNA, thereby taking part in genome evolution and adaptation through horizontal gene transfer. The biological significance of archaeal nanotubes is yet to be demonstrated, although they could participate in EVs biogenesis or exchange of cellular contents. We also discuss the biological mechanisms leading to EV/nanotube biogenesis in Archaea. It has been recently demonstrated that, similar to eukaryotes, EV budding in crenarchaea depends on the ESCRT machinery, whereas the mechanism of EV budding in euryarchaeal lineages, which lack the ESCRT-III homologs, remains unclear

    Virus Evolution toward Limited Dependence on Nonessential Functions of the Host: the Case of Bacteriophage SPP1

    No full text
    All viruses are obligate intracellular parasites and depend on certain host cell functions for multiplication. However, the extent of such dependence and the exact nature of the functions provided by the host cell remain poorly understood. Here, we investigated if nonessential Bacillus subtilis genes are necessary for multiplication of bacteriophage SPP1. Screening of a collection of 2,514 single-gene knockouts of nonessential B. subtilis genes yielded only a few genes necessary for efficient SPP1 propagation. Among these were genes belonging to the yuk operon, which codes for the Esat-6-like secretion system, including the SPP1 receptor protein YueB. In addition, we found that SPP1 multiplication was negatively affected by the absence of two other genes, putB and efp. The gene efp encodes elongation factor P, which enhances ribosome activity by alleviating translational stalling during the synthesis of polyproline-containing proteins. PutB is an enzyme involved in the proline degradation pathway that is required for infection in the post-exponential growth phase of B. subtilis, when the bacterium undergoes a complex genetic reprogramming. The putB knockout shortens significantly the window of opportunity for SPP1 infection during the host cell life cycle. This window is a critical parameter for competitive phage multiplication in the soil environment, where B. subtilis rarely meets conditions for exponential growth. Our results in combination with those reported for other virus-host systems suggest that bacterial viruses have evolved toward limited dependence on nonessential host functions. IMPORTANCE A successful viral infection largely depends on the ability of the virus to hijack cellular machineries and to redirect the flow of building blocks and energy resources toward viral progeny production. However, the specific virus-host interactions underlying this fundamental transformation are poorly understood. Here, we report on the first systematic analysis of virus-host cross talk during bacteriophage infection in Gram-positive bacteria. We show that lytic bacteriophage SPP1 is remarkably independent of nonessential genes of its host, Bacillus subtilis, with only a few cellular genes being necessary for efficient phage propagation. We hypothesize that such limited dependence of the virus on its host results from a constant "evolutionary arms race" and might be much more widespread than currently thought

    Additional file 1: Figure S1. of Evolution of an archaeal virus nucleocapsid protein from the CRISPR-associated Cas4 nuclease

    No full text
    Results of the HHpred search seeded with TP1 (A) and gp7 (B) sequences. H(h), ι-helix; E(e), β-strand; C(c), coil. (PDF 237 kb

    Virus-induced cell gigantism and asymmetric cell division in archaea

    No full text
    International audienceArchaeal viruses represent one of the most mysterious parts of the global virosphere, with many virus groups sharing no evolutionary relationship to viruses of bacteria or eukaryotes. How these viruses interact with their hosts remains largely unexplored. Here we show that nonlytic lemon-shaped virus STSV2 interferes with the cell cycle control of its host, hyperthermophilic and acidophilic archaeon Sulfolobus islandicus, arresting the cell cycle in the S phase. STSV2 infection leads to transcriptional repression of the cell division machinery, which is homologous to the eukaryotic endosomal sorting complexes required for transport (ESCRT) system. The infected cells grow up to 20-fold larger in size, have 8,000-fold larger volume compared to noninfected cells, and accumulate massive amounts of viral and cellular DNA. Whereas noninfected Sulfolobus cells divide symmetrically by binary fission, the STSV2-infected cells undergo asymmetric division, whereby giant cells release normal-sized cells by budding, resembling the division of budding yeast. Reinfection of the normal-sized cells produces a new generation of giant cells. If the CRISPR-Cas system is present, the giant cells acquire virus-derived spacers and terminate the virus spread, whereas in its absence, the cycle continues, suggesting that CRISPR-Cas is the primary defense system in Sulfolobus against STSV2. Collectively, our results show how an archaeal virus manipulates the cell cycle, transforming the cell into a giant virion-producing factory

    New virus isolates from Italian hydrothermal environments underscore the biogeographic pattern in archaeal virus communities

    No full text
    International audienceViruses of hyperthermophilic archaea represent one of the least understood parts of the virosphere, showing little genomic and morphological similarity to viruses of bacteria or eukaryotes. Here, we investigated virus diversity in the active sulfurous fields of the Campi Flegrei volcano in Pozzuoli, Italy. Virus-like particles displaying eight different morphotypes, including lemon-shaped, droplet-shaped and bottle-shaped virions, were observed and five new archaeal viruses proposed to belong to families Rudiviridae, Globuloviridae and Tristromaviridae were isolated and characterized. Two of these viruses infect neutrophilic hyperthermophiles of the genus Pyrobaculum, whereas the remaining three have rod-shaped virions typical of the family Rudiviridae and infect acidophilic hyperthermophiles belonging to three different genera of the order Sulfolobales, namely, Saccharolobus, Acidianus, and Metallosphaera. Notably, Metallosphaera rod-shaped virus 1 is the first rudivirus isolated on Metallosphaera species. Phylogenomic analysis of the newly isolated and previously sequenced rudiviruses revealed a clear biogeographic pattern, with all Italian rudiviruses forming a monophyletic clade, suggesting geographical structuring of virus communities in extreme geothermal environments. Analysis of the CRISPR spacers suggests that isolated rudiviruses have experienced recent host switching across the genus boundary, potentially to escape the targeting by CRISPR-Cas immunity systems. Finally, we propose a revised classification of the Rudiviridae family, with the establishment of six new genera. Collectively, our results further show that high-temperature continental hydrothermal systems harbor a highly diverse virome and shed light on the evolution of archaeal viruses

    Archaeal extracellular vesicles are produced in an ESCRT-dependent manner and promote gene transfer and nutrient cycling in extreme environments

    No full text
    International audienceRole of extracellular vesicles in extreme environments Membrane-bound extracellular vesicles (EVs), secreted by cells from all three domains of life, transport various molecules and act as agents of intercellular communication in diverse environments. Here we demonstrate that EVs produced by a hyperthermophilic and acidophilic archaeon Sulfolobus islandicus carry not only a diverse proteome, enriched in membrane proteins, but also chromosomal and plasmid DNA, and can transfer this DNA to recipient cells. Furthermore, we show that EVs can support the heterotrophic growth of Sulfolobus in minimal medium, implicating EVs in carbon and nitrogen fluxes in extreme environments. Finally, our results indicate that, similar to eukaryotes, production of EVs in S. islandicus depends on the archaeal ESCRT machinery. We find that all components of the ESCRT apparatus are encapsidated into EVs. Using synchronized S. islandicus cultures, we show that EV production is linked to cell division and appears to be triggered by increased expression of ESCRT proteins during this cell cycle phase. Using a CRISPR-based knockdown system, we show that archaeal ESCRT-III and AAA+ ATPase Vps4 are required for EV production, whereas archaea-specific component CdvA appears to be dispensable. In particular, the active EV production appears to coincide with the expression patterns of ESCRT-III-1 and ESCRT-III-2, rather than ESCRT-III, suggesting a prime role of these proteins in EV budding. Collectively, our results suggest that ESCRT-mediated EV biogenesis has deep evolutionary roots, likely predating the divergence of eukaryotes and archaea, and that EVs play an important role in horizontal gene transfer and nutrient cycling in extreme environments
    corecore