686 research outputs found

    Few Graphene layer/Carbon-Nanotube composite Grown at CMOS-compatible Temperature

    Get PDF
    We investigate the growth of the recently demonstrated composite material composed of vertically aligned carbon nanotubes capped by few graphene layers. We show that the carbon nanotubes grow epitaxially under the few graphene layers. By using a catalyst and gaseous carbon precursor different from those used originally we establish that such unconventional growth mode is not specific to a precise choice of catalyst-precursor couple. Furthermore, the composite can be grown using catalyst and temperatures compatible with CMOS processing (T < 450\degree C).Comment: 4 pages, 4 figure

    An HMM-Based Framework for Supporting Accurate Classification of Music Datasets

    Get PDF
    open3In this paper, we use Hidden Markov Models (HMM) and Mel-Frequency Cepstral Coecients (MFCC) to build statistical models of classical music composers directly from the music datasets. Several musical pieces are divided by instruments (String, Piano, Chorus, Orchestra), and, for each instrument, statistical models of the composers are computed.We selected 19 dierent composers spanning four centuries by using a total number of 400 musical pieces. Each musical piece is classied as belonging to a composer if the corresponding HMM gives the highest likelihood for that piece. We show that the so-developed models can be used to obtain useful information on the correlation between the composers. Moreover, by using the maximum likelihood approach, we also classied the instrumentation used by the same composer. Besides as an analysis tool, the described approach has been used as a classier. This overall originates an HMM-based framework for supporting accurate classication of music datasets. On a dataset of String Quartet movements, we obtained an average composer classication accuracy of more than 96%. As regards instrumentation classication, we obtained an average classication of slightly less than 100% for Piano, Orchestra and String Quartet. In this paper, the most signicant results coming from our experimental assessment and analysis are reported and discussed in detail.openCuzzocrea, Alfredo; Mumolo, Enzo; Vercelli, GianniCuzzocrea, Alfredo; Mumolo, Enzo; Vercelli, Giann

    Supraspinal inactivation of mitochondrial superoxide dismutase is a source of peroxynitrite in the development of morphine antinociceptive tolerance.

    Get PDF
    Effective treatment of chronic pain with morphine is limited by decreases in the drug’s analgesic action with chronic administration (antinociceptive tolerance). Because opioids are mainstays of pain management, restoring their efficacy has great clinical importance. We have recently reported that formation of peroxynitrite (ONOO(−), PN) in the dorsal horn of the spinal cord plays a critical role in the development of morphine antinociceptive tolerance and have further documented that nitration and enzymatic inactivation of mitochondrial superoxide dismutase (MnSOD) at that site provides a source for this nitroxidative species. We now report for the first time that antinociceptive tolerance is also associated with the inactivation of MnSOD at supraspinal sites. Inactivation of MnSOD led to nitroxidative stress as evidenced by increased levels of products of oxidative DNA damage and activation of the nuclear factor poly (ADP-ribose) polymerase in whole brain homogenates. Co-administration of morphine with potent Mn porphyrin-based peroxynitrite scavengers, (MnTE-2-PyP(5+) and MnTnHex-2-PyP(5+)) (1) restored the enzymatic activity of MnSOD, (2) attenuated PN derived nitroxidative stress, and (3) blocked the development of morphine induced antinociceptive tolerance. The more lipophilic analogue, MnTnHex-2-PyP(5+) was able to cross the blood brain barrier at higher levels than its lipophylic counterpart MnTE-2-PyP(5+) and was about 30 fold more efficacious. Collectively, these data suggest that peroxynitrite mediated enzymatic inactivation of supraspinal MnSOD provides a source of nitroxidative stress, which in turn contributes to central sensitization associated with the development of morphine antinociceptive tolerance. These results support our general contention that PN-targeted therapeutics may have potential as adjuncts to opiates in pain management

    Aging and Parkinson's Disease: Inflammaging, neuroinflammation and biological remodeling as key factors in pathogenesis

    Get PDF
    In order to better understand the pathogenesis of Parkinson's Disease (PD) it is important to consider possible contributory factors inherent to the aging process, as age-related changes in a number of physiological systems (perhaps incurred within particular environments) appear to influence the onset and progression of neurodegenerative disorders. Accordingly, we posit that a principal mechanism underlying PD is inflammaging, i.e. the chronic inflammatory process characterized by an imbalance of pro- and anti-inflammatory mechanisms which has been recognized as operative in several age-related, and notably neurodegenerative diseases. Recent conceptualization suggests that inflammaging is part of the complex adaptive mechanisms (\ue2\u80\u9cre-modeling\ue2\u80\u9d) that are ongoing through the lifespan, and which function to prevent or mitigate endogenous processes of tissue disruption and degenerative change(s). The absence of an adequate anti-inflammatory response can fuel inflammaging, which propagates on both local (i.e.- from cell to cell) and systemic levels (e.g.- via exosomes and other molecules present in the blood). In general, this scenario is compatible with the hypothesis that inflammaging represents a hormetic or hormetic-like effect, in which low levels of inflammatory stress may prompt induction of anti-inflammatory mediators and mechanisms, while sustained pro-inflammatory stress incurs higher and more durable levels of inflammatory substances, which, in turn prompt a local-to-systemic effect and more diverse inflammatory response(s). Given this perspective, new treatments of PD may be envisioned that strategically are aimed at exerting hormetic effects to sustain anti-inflammatory responses, inclusive perhaps, of modulating the inflammatory influence of the gut microbiota

    Osteoporosis and alzheimer pathology: Role of cellular stress response and hormetic redox signaling in aging and bone remodeling

    Get PDF
    Alzheimer’s disease (AD) and osteoporosis are multifactorial progressive degenerative disorders. Increasing evidence shows that osteoporosis and hip fracture are common complication observed in AD patients, although the mechanisms underlying this association remain poorly understood. Reactive oxygen species (ROS) are emerging as intracellular redox signaling molecules involved in the regulation of bone metabolism, including receptor activator of nuclear factor-ÎșB ligand-dependent osteoclast differentiation, but they also have cytotoxic effects that include lipoperoxidation and oxidative damage to proteins and DNA. ROS generation, which is implicated in the regulation of cellular stress response mechanisms, is an integrated, highly regulated, process under control of redox sensitive genes coding for redox proteins called vitagenes. Vitagenes, encoding for proteins such as heat shock proteins (Hsps) Hsp32, Hsp70, the thioredoxin, and the sirtuin protein, represent a systems controlling a complex network of intracellular signaling pathways relevant to life span and involved in the preservation of cellular homeostasis under stress conditions. Consistently, nutritional anti-oxidants have demonstrated their neuroprotective potential through a hormetic-dependent activation of vitagenes. The biological relevance of dose–response affects those strategies pointing to the optimal dosing to patients in the treatment of numerous diseases. Thus, the heat shock response has become an important hormetic target for novel cytoprotective strategies focusing on the pharmacological development of compounds capable of modulating stress response mechanisms. Here we discuss possible signaling mechanisms involved in the activation of vitagenes which, relevant to bone remodeling and through enhancement of cellular stress resistance provide a rationale to limit the deleterious consequences associated to homeostasis disruption with consequent impact on the aging process

    REGULATION OF PROSTAGLANDIN GENERATION IN CARRAGEENAN-INDUCED PLEURISY BY INDUCIBLE NITRIC OXIDE SYNTHASE IN KNOCKOUT MICE

    Get PDF
    In the present study, by comparing the responses in wild-type mice (iNOSWT) and mice lacking (iNOSKO) the inducible (or type 2) nitric oxide synthase (iNOS), we investigated the correlation between endogenous nitric oxide (NO) and prostaglandin (PG) generation in carrageenan-induced pleurisy. The inflammatory response in iNOSKO mice was significantly reduced in respect to iNOSWT animals, as demonstrated by the exudate volume (-63%) and numbers of infiltrating cells (-62%). The levels of NOx in the pleural exudate from carrageenan-treated mice were significantly (p < 0.01) decreased in iNOSKO mice (16 ± 7.6 nmoles/mice) compared to iNOSWT animals (133 ± 9 nmoles/mice). Similarly, the amounts of PGE2 in the pleural exudates of carrageenan-treated animals were significantly (p < 0.01) lower in iNOSKO compared to iNOSWT mice (120 ± 20 pg/mice vs. 308 ± 51 pg/mice). Also the amounts of 6-keto-PGF1α produced by lungs from carrageenan-treated iNOSKO mice (1.01 ± 0.10 ng/tissue mg) were significantly (p < 0.01) reduced compared to iNOSWT carrageenan-treated mice (2.1 ± 0.09 ng/tissue mg). In conclusion our results confirm, by the use of iNOSKO mice that in carrageenan-induced pleurisy NO positively modulates PG biosynthesis

    Inhibition or knock out of Inducible nitric oxide synthase result in resistance to bleomycin-induced lung injury

    Get PDF
    BACKGROUND: In the present study, by comparing the responses in wild-type mice (WT) and mice lacking (KO) the inducible (or type 2) nitric oxide synthase (iNOS), we investigated the role played by iNOS in the development of on the lung injury caused by bleomycin administration. When compared to bleomycin-treated iNOSWT mice, iNOSKO mice, which had received bleomycin, exhibited a reduced degree of the (i) lost of body weight, (ii) mortality rate, (iii) infiltration of the lung with polymorphonuclear neutrophils (MPO activity), (iv) edema formation, (v) histological evidence of lung injury, (vi) lung collagen deposition and (vii) lung Transforming Growth Factor beta1 (TGF-ÎČ1) expression. METHODS: Mice subjected to intratracheal administration of bleomycin developed a significant lung injury. Immunohistochemical analysis for nitrotyrosine revealed a positive staining in lungs from bleomycin-treated iNOSWT mice. RESULTS: The intensity and degree of nitrotyrosine staining was markedly reduced in tissue section from bleomycin-iNOSKO mice. Treatment of iNOSWT mice with of GW274150, a novel, potent and selective inhibitor of iNOS activity (5 mg/kg i.p.) also significantly attenuated all of the above indicators of lung damage and inflammation. CONCLUSION: Taken together, our results clearly demonstrate that iNOS plays an important role in the lung injury induced by bleomycin in the mice
    • 

    corecore