7,506 research outputs found
Language-universal constraints on the segmentation of English
Two word-spotting experiments are reported that examine whether the Possible-Word Constraint (PWC) [1] is a language-specific or language-universal strategy for the segmentation of continuous speech. The PWC disfavours parses which leave an impossible residue between the end of a candidate word and a known boundary. The experiments examined cases where the residue was either a CV syllable with a lax vowel, or a CVC syllable with a schwa. Although neither syllable context is a possible word in English, word-spotting in both contexts was easier than with a context consisting of a single consonant. The PWC appears to be language-universal rather than language-specific
Improved Stack-Slide Searches for Gravitational-Wave Pulsars
We formulate and optimize a computational search strategy for detecting
gravitational waves from isolated, previously-unknown neutron stars (that is,
neutron stars with unknown sky positions, spin frequencies, and spin-down
parameters). It is well known that fully coherent searches over the relevant
parameter-space volumes are not computationally feasible, and so more
computationally efficient methods are called for. The first step in this
direction was taken by Brady & Creighton (2000), who proposed and optimized a
two-stage, stack-slide search algorithm. We generalize and otherwise improve
upon the Brady-Creighton scheme in several ways. Like Brady & Creighton, we
consider a stack-slide scheme, but here with an arbitrary number of
semi-coherent stages and with a coherent follow-up stage at the end. We find
that searches with three semi-coherent stages are significantly more efficient
than two-stage searches (requiring about 2-5 times less computational power for
the same sensitivity) and are only slightly less efficient than searches with
four or more stages. We calculate the signal-to-noise ratio required for
detection, as a function of computing power and neutron star spin-down-age,
using our optimized searches.Comment: 19 pages, 7 figures, RevTeX
A How-To for the Mock LISA Data Challenges
The LISA International Science Team Working Group on Data Analysis
(LIST-WG1B) is sponsoring several rounds of mock data challenges, with the
purpose of fostering development of LISA data-analysis capabilities, and of
demonstrating technical readiness for the maximum science exploitation of the
LISA data. The first round of challenge data sets were released at this
Symposium. We describe the models and conventions (for LISA and for
gravitational-wave sources) used to prepare the data sets, the file format used
to encode them, and the tools and resources available to support challenge
participants.Comment: 10 pages, 1 figure, in Proceedings of the Sixth International LISA
Symposium (AIP, 2006
Gravitational Radiation Instability in Hot Young Neutron Stars
We show that gravitational radiation drives an instability in hot young
rapidly rotating neutron stars. This instability occurs primarily in the l=2
r-mode and will carry away most of the angular momentum of a rapidly rotating
star by gravitational radiation. On the timescale needed to cool a young
neutron star to about T=10^9 K (about one year) this instability can reduce the
rotation rate of a rapidly rotating star to about 0.076\Omega_K, where \Omega_K
is the Keplerian angular velocity where mass shedding occurs. In older colder
neutron stars this instability is suppressed by viscous effects, allowing older
stars to be spun up by accretion to larger angular velocities.Comment: 4 Pages, 2 Figure
Testing Alternative Theories of Gravity using LISA
We investigate the possible bounds which could be placed on alternative
theories of gravity using gravitational wave detection from inspiralling
compact binaries with the proposed LISA space interferometer. Specifically, we
estimate lower bounds on the coupling parameter \omega of scalar-tensor
theories of the Brans-Dicke type and on the Compton wavelength of the graviton
\lambda_g in hypothetical massive graviton theories. In these theories,
modifications of the gravitational radiation damping formulae or of the
propagation of the waves translate into a change in the phase evolution of the
observed gravitational waveform. We obtain the bounds through the technique of
matched filtering, employing the LISA Sensitivity Curve Generator (SCG),
available online. For a neutron star inspiralling into a 10^3 M_sun black hole
in the Virgo Cluster, in a two-year integration, we find a lower bound \omega >
3 * 10^5. For lower-mass black holes, the bound could be as large as 2 * 10^6.
The bound is independent of LISA arm length, but is inversely proportional to
the LISA position noise error. Lower bounds on the graviton Compton wavelength
ranging from 10^15 km to 5 * 10^16 km can be obtained from one-year
observations of massive binary black hole inspirals at cosmological distances
(3 Gpc), for masses ranging from 10^4 to 10^7 M_sun. For the highest-mass
systems (10^7 M_sun), the bound is proportional to (LISA arm length)^{1/2} and
to (LISA acceleration noise)^{-1/2}. For the others, the bound is independent
of these parameters because of the dominance of white-dwarf confusion noise in
the relevant part of the frequency spectrum. These bounds improve and extend
earlier work which used analytic formulae for the noise curves.Comment: 16 pages, 9 figures, submitted to Classical & Quantum Gravit
Bayesian coherent analysis of in-spiral gravitational wave signals with a detector network
The present operation of the ground-based network of gravitational-wave laser
interferometers in "enhanced" configuration brings the search for gravitational
waves into a regime where detection is highly plausible. The development of
techniques that allow us to discriminate a signal of astrophysical origin from
instrumental artefacts in the interferometer data and to extract the full range
of information are some of the primary goals of the current work. Here we
report the details of a Bayesian approach to the problem of inference for
gravitational wave observations using a network of instruments, for the
computation of the Bayes factor between two hypotheses and the evaluation of
the marginalised posterior density functions of the unknown model parameters.
The numerical algorithm to tackle the notoriously difficult problem of the
evaluation of large multi-dimensional integrals is based on a technique known
as Nested Sampling, which provides an attractive alternative to more
traditional Markov-chain Monte Carlo (MCMC) methods. We discuss the details of
the implementation of this algorithm and its performance against a Gaussian
model of the background noise, considering the specific case of the signal
produced by the in-spiral of binary systems of black holes and/or neutron
stars, although the method is completely general and can be applied to other
classes of sources. We also demonstrate the utility of this approach by
introducing a new coherence test to distinguish between the presence of a
coherent signal of astrophysical origin in the data of multiple instruments and
the presence of incoherent accidental artefacts, and the effects on the
estimation of the source parameters as a function of the number of instruments
in the network.Comment: 22 page
Bilingual phonology in dichotic perception: A case study of Malayalam and English voicing
Listeners often experience cocktail-party situations, encountering multiple ongoing conversa- tions while tracking just one. Capturing the words spoken under such conditions requires selec- tive attention and processing, which involves using phonetic details to discern phonological structure. How do bilinguals accomplish this in L1-L2 competition? We addressed that question using a dichotic listening task with fluent Malayalam-English bilinguals, in which they were pre- sented with synchronized nonce words, one in each language in separate ears, with competing onsets of a labial stop (Malayalam) and a labial fricative (English), both voiced or both voiceless. They were required to attend to the Malayalam or the English item, in separate blocks, and report the initial consonant they heard. We found that perceptual intrusions from the unattended to the attended language were influenced by voicing, with more intrusions on voiced than voiceless tri- als. This result supports our proposal for the feature specification of consonants in Malayalam- English bilinguals, which makes use of privative features, underspecification and the “standard approach” to laryngeal features, as against “laryngeal realism”. Given this representational account, we observe that intrusions result from phonetic properties in the unattended signal being assimilated to the closest matching phonological category in the attended language, and are more likely for segments with a greater number of phonological feature specifications
- …