102 research outputs found

    Maryland Mechanics\u27 Lien Law - Its Scope and Effect

    Get PDF

    Frequency standards from industry over the next 25 years

    Get PDF
    Present and possible future performance for many of the existing and new commercial frequency standards is presented here. Recent progress in the gas cell atomic standards with regards to size and cost is significant and considerable improvement is expected. Cesium beam standards will benefit in stability and accuracy from optical pumping. Cooled hydrogen masers will offer extremely good stability. Advances in trapped ion and cesium fountain technologies make them good high performance candidates for the future. The quartz oscillator field is more mature and consequently performance improvements for the future are going to be less spectacular. Oscillators stabilized to GPS will have many applications. Recent performance of cooled microwave dielectric resonator oscillators is very good and they offer the promise of serving as flywheel oscillators for advanced performance atomic standards

    A globally efficient means of distributing UTC time and frequency through GPS

    Get PDF
    Time and frequency outputs comparable in quality to the best laboratories have been demonstrated on an integrated system suitable for field application on a global basis. The system measures the time difference between 1 pulse-per-second (pps) signals derived from local primary frequency standards and from a multi-channel GPS C/A receiver. The measured data is processed through optimal SA Filter algorithms that enhance both the stability and accuracy of GPS timing signals. Experiments were run simultaneously at four different sites. Even with large distances between sites, the overall results show a high degree of cross-correlation of the SA noise. With sufficiently long simultaneous measurement sequences, the data shows that determination of the difference in local frequency from an accepted remote standard to better than 1 x 10(exp -14) is possible. This method yields frequency accuracy, stability, and timing stability comparable to that obtained with more conventional common-view experiments. In addition, this approach provides UTC(USNO MC) in real time to an accuracy better than 20 ns without the problems normally associated with conventional common-view techniques. An experimental tracking loop was also set up to demonstrate the use of enhanced GPS for dissemination of UTC(USNO MC) over a wide geographic area. Properly disciplining a cesium standard with a multi-channel GPS receiver, with additional input from USNO, has been found to permit maintaining a timing precision of better than 10 ns between Palo Alto, CA and Washington, DC

    Radiative multipole moments of integer-spin fields in curved spacetime

    Get PDF
    Radiative multipole moments of scalar, electromagnetic, and linearized gravitational fields in Schwarzschild spacetime are computed to third order in v in a weak-field, slow-motion approximation, where v is a characteristic velocity associated with the motion of the source. To zeroth order in v, a radiative moment of order l is given by the corresponding source moment differentiated l times with respect to retarded time. At second order in v, additional terms appear inside the spatial integrals. These are near-zone corrections which depend on the detailed behavior of the source. At third order in v, the correction terms occur outside the spatial integrals, so that they do not depend on the detailed behavior of the source. These are wave-propagation corrections which are heuristically understood as arising from the scattering of the radiation by the spacetime curvature surrounding the source. Our calculations show that the wave-propagation corrections take a universal form which is independent of multipole order and field type. We also show that in general relativity, temporal and spatial curvatures contribute equally to the wave-propagation corrections.Comment: 34 pages, ReVTe

    A new approach to electromagnetic wave tails on a curved spacetime

    Full text link
    We present an alternative method for constructing the exact and approximate solutions of electromagnetic wave equations whose source terms are arbitrary order multipoles on a curved spacetime. The developed method is based on the higher-order Green's functions for wave equations which are defined as distributions that satisfy wave equations with the corresponding order covariant derivatives of the Dirac delta function as the source terms. The constructed solution is applied to the study of various geometric effects on the generation and propagation of electromagnetic wave tails to first order in the Riemann tensor. Generally the received radiation tail occurs after a time delay which represents geometrical backscattering by the central gravitational source. It is shown that the truly nonlocal wave-propagation correction (the tail term) takes a universal form which is independent of multipole order. In a particular case, if the radiation pulse is generated by the source during a finite time interval, the tail term after the primary pulse is entirely determined by the energy-momentum vector of the gravitational field source: the form of the tail term is independent of the multipole structure of the gravitational source. We apply the results to a compact binary system and conclude that under certain conditions the tail energy can be a noticeable fraction of the primary pulse energy. We argue that the wave tails should be carefully considered in energy calculations of such systems.Comment: RevTex, 28 pages, 5 eps figures, http://www.tpu.ee/~tony/texdocs/, 4 changes made (pp. 2, 4, 22, 24), 2 references adde

    A Deficiency of Ceramide Biosynthesis Causes Cerebellar Purkinje Cell Neurodegeneration and Lipofuscin Accumulation

    Get PDF
    Sphingolipids, lipids with a common sphingoid base (also termed long chain base) backbone, play essential cellular structural and signaling functions. Alterations of sphingolipid levels have been implicated in many diseases, including neurodegenerative disorders. However, it remains largely unclear whether sphingolipid changes in these diseases are pathological events or homeostatic responses. Furthermore, how changes in sphingolipid homeostasis shape the progression of aging and neurodegeneration remains to be clarified. We identified two mouse strains, flincher (fln) and toppler (to), with spontaneous recessive mutations that cause cerebellar ataxia and Purkinje cell degeneration. Positional cloning demonstrated that these mutations reside in the Lass1 gene. Lass1 encodes (dihydro)ceramide synthase 1 (CerS1), which is highly expressed in neurons. Both fln and to mutations caused complete loss of CerS1 catalytic activity, which resulted in a reduction in sphingolipid biosynthesis in the brain and dramatic changes in steady-state levels of sphingolipids and sphingoid bases. In addition to Purkinje cell death, deficiency of CerS1 function also induced accumulation of lipofuscin with ubiquitylated proteins in many brain regions. Our results demonstrate clearly that ceramide biosynthesis deficiency can cause neurodegeneration and suggest a novel mechanism of lipofuscin formation, a common phenomenon that occurs during normal aging and in some neurodegenerative diseases

    In praise of arrays

    Get PDF
    Microarray technologies have both fascinated and frustrated the transplant community since their introduction roughly a decade ago. Fascination arose from the possibility offered by the technology to gain a profound insight into the cellular response to immunogenic injury and the potential that this genomic signature would be indicative of the biological mechanism by which that stress was induced. Frustrations have arisen primarily from technical factors such as data variance, the requirement for the application of advanced statistical and mathematical analyses, and difficulties associated with actually recognizing signature gene-expression patterns and discerning mechanisms. To aid the understanding of this powerful tool, its versatility, and how it is dramatically changing the molecular approach to biomedical and clinical research, this teaching review describes the technology and its applications, as well as the limitations and evolution of microarrays, in the field of organ transplantation. Finally, it calls upon the attention of the transplant community to integrate into multidisciplinary teams, to take advantage of this technology and its expanding applications in unraveling the complex injury circuits that currently limit transplant survival

    Learning From History About Reducing Infant Mortality: Contrasting the Centrality of Structural Interventions to Early 20th‐Century Successes in the United States to Their Neglect in Current Global Initiatives

    Get PDF

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
    corecore