539 research outputs found

    Reference concentrations for trace elements in urine for the Brazilian population based on q-ICP-MS with a simple dilute-and-shoot procedure

    Get PDF
    Biomonitoring of trace elements is of critical importance in human health assessment. However, trace element concentrations in biological fluids are affected by environmental and physiological parameters, and therefore considerable variations can occur between specific population subgroups. Brazil is a large country with large environmental diversity and with a limited knowledge of the reference values (baseline data) for trace elements in biological fluids. Atomic absorption spectrometry (AAS) and inductively coupled plasma emission spectrometry (ICP-OES) are still the dominant analytical techniques used for biomonitoring trace element analysis in clinical specimens. However, the use of ICP-MS is becoming more usual in clinical laboratory analysis. Then, we evaluated here a simple dilute-and-shoot method for sequential determination of Al, Ba, Be, Cd, Co, Cu, Cs, Mn, Ni, Pb, Pt, Sb, Se, Sn, Tl and U in urine by quadrupole inductively coupled plasma mass spectrometry (q-ICP-MS). Urine samples (500 µL) were accurately pipetted into conical tubes (15 mL) and diluted to 10 mL with a solution containing 0.5 % (v/v) HNO3 + 0.005% (v/v) Triton X-100. Diluted urine samples also contain rhodium, iridium and yttrium added as internal standards. After that, samples were directly analyzed by ICP-MS against matrix-matching calibration. Method detection limit (3s, n = 20) were in the ng L-1 range for all analytes. The method was applied to the analysis of 412 ordinary urine samples from Brazilian healthy and non-exposed subjects to establish reference values. Data validation was provided by the analysis of the standard reference material (SRM) 2670a toxic elements in urine (freeze-dried) (high and low levels) from the National Institute of Standards and Technology (NIST) and reference urine samples from the trace elements intercomparison program operated by the Institut National de Sante' Publique du Quebec, Canada.O biomonitoramento de elementos químicos é de extrema importância na avaliação da saúde humana. Entretanto, as concentrações dos elementos químicos nos fluidos biológicos são afetadas por parâmetros ambientais e fisiológicos e, consequentemente, consideráveis variações podem ocorrer entre subgrupos de populações específicas. O Brasil é um país com ampla diversidade ambiental e existe limitado conhecimento de valores de referência para elementos químicos em fluidos biológicos. A espectrometria de absorção atômica (AAS) e a espectrometria de emissão ótica com plasma acoplado indutivamente (ICP-OES) ainda são as técnicas analíticas mais comumente empregadas no biomonitoramento de elementos químicos em amostras clínicas. Entretanto, o uso da espectrometria de massas com plasma acoplado indutivamente (ICP-MS) está se tornando a cada dia mais comum nos laboratórios clínicos. Neste estudo, foi avaliado um método rápido envolvendo simples diluição da amostra para determinação de Al, Ba, Be, Cd, Co, Cu, Cs, Mn, Ni, Pb, Pt, Sb, Se, Sn, Tl e U em urina por ICP-MS. Amostras de urina (500 μL) foram pipetadas em frascos cônicos de 15 mL e diluídas para 10 mL com uma solução contendo 0,5 % (v/v) HNO3 + 0,005% (v/v) Triton X-100. Ródio, irídio e ítrio foram adicionados como padrões internos. Em seguida, as amostras foram diretamente analisadas por ICP-MS com calibração por ajuste de matriz. Os limites de detecção do método (3s, n = 20) foram da ordem de ng L-1 para todos os analitos em estudo. O método foi aplicado para a análise de 412 amostras de urina de brasileiros saudáveis e não expostos ambientalmente ou ocupacionalmente a metais para o estabelecimento de valores de referência na população brasileira. A validação dos resultados foi acompanhada pela análise de material de referência certificada de urina (SRM) 2670a proveniente do National Institute of Standards and Technology (NIST) e de materiais de referência provenientes do Institut National de Sante' Publique Du Quebec, no Canadá.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Determination of Cd and Pb in fuel ethanol by filter furnace electrothermal atomic absorption spectrometry

    Full text link
    A method was developed for quantification of Cd and Pb in ethanol fuel by filter furnace atomic absorption spectrometry. Filter furnace was used to eliminate the need for chemical modification, to stabilize volatile analytes and to allow the application of short pyrolysis step. The determinations in samples were carried out against calibration solutions prepared in ethanol. Recovery tests were made in seven commercial ethanol fuel samples with values between 90 and 120%. Limits of detection were 0.1 µg L-1 for Cd and 0.3 µg L-1 for Pb. Certified water samples (APS 1071, APS 1033, NIST 1643d, NIST 1640) were also used to evaluate accuracy and recoveries from 86.8% to115% were obtained

    Experimental study on the influence of dimethylamine on the detection of gas phase sulfuric acid using chemical ionization mass spectrometry (CIMS)

    Get PDF
    Based on quantum chemistry calculations it has been suggested that the quantitative detection of gas phase sulfuric acid (H_2SO_4) by use of Chemical Ionization Mass Spectrometry (CIMS) could be biased in the presence of gas phase amines such as dimethylamine (DMA). An experiment was set up at the CLOUD aerosol chamber to test the quantitative detection of H_2SO_4 by CIMS by directly comparing the measured H_2SO_4 with and without DMA being present in the sample air. It was found that the H_2SO_4 cluster distribution changes but the CIMS detection efficiency is not strongly influenced

    The prevalence of injection-site reactions with disease-modifying therapies and their effect on adherence in patients with multiple sclerosis: an observational study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Interferon beta (IFNβ) and glatiramer acetate (GA) are administered by subcutaneous (SC) or intramuscular (IM) injection. Patients with multiple sclerosis (MS) often report injection-site reactions (ISRs) as a reason for noncompliance or switching therapies. The aim of this study was to compare the proportion of patients on different formulations of IFNβ or GA who experienced ISRs and who switched or discontinued therapy because of ISRs.</p> <p>Methods</p> <p>The Swiss MS Skin Project was an observational multicenter study. Patients with MS or clinically isolated syndrome who were on the same therapy for at least 2 years were enrolled. A skin examination was conducted at the first study visit and 1 year later.</p> <p>Results</p> <p>The 412 patients enrolled were on 1 of 4 disease-modifying therapies for at least 2 years: IM IFNβ-1a (n = 82), SC IFNβ-1b (n = 123), SC IFNβ-1a (n = 184), or SC GA (n = 23). At first evaluation, ISRs were reported by fewer patients on IM IFNβ-1a (13.4%) than on SC IFNβ-1b (57.7%; <it>P </it>< 0.0001), SC IFNβ-1a (67.9%; <it>P </it>< 0.0001), or SC GA (30.4%; <it>P </it>= not significant [NS]). No patient on IM IFNβ-1a missed a dose in the previous 4 weeks because of ISRs, compared with 5.7% of patients on SC IFNβ-1b (<it>P </it>= 0.044), 7.1% of patients on SC IFNβ-1a (<it>P </it>= 0.011), and 4.3% of patients on SC GA (<it>P </it>= NS). Primary reasons for discontinuing or switching therapy were ISRs or lack of efficacy. Similar patterns were observed at 1 year.</p> <p>Conclusions</p> <p>Patients on IM IFNβ-1a had fewer ISRs and were less likely to switch therapies than patients on other therapies. This study may have implications in selecting initial therapy or, for patients considering switching or discontinuing therapy because of ISRs, selecting an alternative option.</p
    corecore