14,627 research outputs found

    Cranial sutures work collectively to distribute strain throughout the reptile skull

    Get PDF
    The skull is composed of many bones that come together at sutures. These sutures are important sites of growth, and as growth ceases some become fused while others remain patent. Their mechanical behaviour and how they interact with changing form and loadings to ensure balanced craniofacial development is still poorly understood. Early suture fusion often leads to disfiguring syndromes, thus is it imperative that we understand the function of sutures more clearly. By applying advanced engineering modelling techniques, we reveal for the first time that patent sutures generate a more widely distributed, high level of strain throughout the reptile skull. Without patent sutures, large regions of the skull are only subjected to infrequent low-level strains that could weaken the bone and result in abnormal development. Sutures are therefore not only sites of bone growth, but could also be essential for the modulation of strains necessary for normal growth and development in reptiles

    Nitrogen additions and litter decomposition: A meta-analysis

    Get PDF
    We conducted a meta-analysis of previously published empirical studies that have examined the effects of nitrogen (N) enrichment on litter decomposition. Our objective was to provide a synthesis of existing data that comprehensively and quantitatively evaluates how environmental and experimental factors interact with N additions to influence litter mass loss. Nitrogen enrichment, when averaged across all studies, had no statistically significant effect on litter decay. However, we observed significant effects of fertilization rate, site-specific ambient N-deposition level, and litter quality. Litter decomposition was inhibited by N additions when fertilization rates were 2–20 times the anthropogenic N-deposition level, when ambient N deposition was 5–10 kg N·ha^−1·yr^−1, or when litter quality was low (typically high-lignin litters). Decomposition was stimulated at field sites exposed to low ambient N deposition (<5 kg N·ha^−1·yr^−1) and for high-quality (low-lignin) litters. Fertilizer type, litterbag mesh size, and climate did not influence the litter decay response to N additions

    Finite element simulation of the braiding process

    Get PDF
    Braiding is one of the most common technique employed for the manufacture of fabrics and ropes. It is also commonly used to produce near-net shaped preforms for advanced fibre reinforced composites. This paper presents an explicit finite element approach to create and simulate the braiding process for the virtual manufacture of 2D braids. The process starts from the definition of an analytical function which describes the movement of the carriers on a braiding track plate. Models of idealised Maypole-type braiding machines are built and used to shape virtual yarns into braids. This procedure can be used in a parameter control fashion, to optimise or to create virtual braided structures, which can serve as input for other structural analyses. It is emphasised that multiple cylinders are required for the modelling of a multifilament yarn to achieve better correlation with the experimental results. A parametric study is presented to investigate the effect of the number of virtual cylinders to represent a real yarn and the shape of the final braid. Excellent correlation was found between the virtual models and the experimental results when comparing the braid angle and yarn width
    • …
    corecore