
EXPERIMENTAL RESULTS ON SOFTWARE DEBUGGING

Sylvia B. Sheppard
Phil Milliman

Bill Curtis
Software Management Research
Information Systems Programs

General Electric Company
1755 Jefferson Davis Highway

Arlington, VA 22202

INTRODUCTION

Debugging programs is one of the most expensive, time-consuming activities in the development of
a software system. Only a few laboratory experiments have investigated the relative difficulty of
locating different types of bugs or the most effective search strategies. Youngs (1974) found that
experience contributed to differences among types of errors made in a construction experiment.
Wescourt and Hemphill (1978) described a model of the debugging process, but the model was
not entirely supported by the available data. Gould and his associates (Gould and Drongowski,
1974; Gould, 1975) found that the type of bug influenced debugging performance on short pro-
grams. Specifically, assignment bugs were more difficult to locate than array or iteration bugs,
probably because the former required a greater understanding of the algorithm used by the prograr

The difficulty of debugging a program may be associated with coding practices used during its
development. One factor which may influence the ease of finding a bug is the complexity of a
program's control flow. Two previous experiments by the authors investigated the effects of
structured control flow in understanding and modification tasks (Sheppard, Curtis, Borst, Milliman,
and Love, 1979). Programmers performed their tasks more efficiently on code which exhibited a
straightforward, top-down control flow than on an unstructured, convoluted control flow. A rig-
orously structured control flow (Dijkstra, 1972) did not produce significantly better performance
than a naturally structured version which allowed limited unstructured constructs (e.g., exits from
loops). Thus the overall top-down quality of the control flow appears to influence performance,
while minor deviations from the tenets of structured code do not appear to influence performance
significantly. This result may reflect the innate awkwardness of implementing strictly structured
code in standard Fortran.

Factors other than the structuredness of the control flow may influence the complexity of a
computer program and, thus, the difficulty programmers experience in performing their tasks.
Some of these factors have been quantified in the software complexity metrics developed by
Halstead (1977) and McCabe (1976). Halstead's metric purportedly represents the number of
mental discriminations involved in developing a program, while McCabe's metric measures the
number of elementary control path segments comprising a program. In experiments on under-
standing and modification, these software complexity metrics were evaluated for their usefulness
as predictors of programmer performance (Curtis, Sheppard, Milliman, Borst, and Love, 1979).
The results observed in those experiments were modest. The correlations in the raw data were
not large, and the number of lines of code usually predicted programmer performance better than
the Halstead or McCabe metrics.- Several limitations in the experimental procedures employed to
obtain the data may have produced these results. First all of the programs studied were short

S. Sheppard
q- G.E.
y^ 1 of 25

https://ntrs.nasa.gov/search.jsp?R=19820068861 2020-03-21T07:01:16+00:00Z

(35-55 lines of code). The limited range of metric values calculated on programs of this length may
not have been sufficient for an adequate test of the predictive worth of the metrics. Second, individual
differences among programmers exerted significant effects on the results obtained. When the data from
the first experiment were transformed in an attempt to control for differences among programs and
programmers, a correlation of-0.73 (p < 0.001) was obtained between the performance criterion and
Halstead's E. However, the issue is not whether theories can be validated with mystical transforma-
tions of data, but whether the results of these heuristic transformations can be replicated in an ex-
periment designed to overcome the limitations of previous research.

The present experiment evaluated the difficulty of locating three types of errors under controlled
programming conditions. In order to compare the effects on performance of different methods
of structuring code, programs in the present experiment were implemented in three types of con-
trol flow, all of which exhibited a generally top-down flow. This experiment also evaluated the
ability of software complexity metrics to predict performance over a wider range of program sizes.
To investigate the effects of length, the three programs in this experiment were subdivided into
functional subroutines so that they could be presented in three different lengths: approximately
50, 125, and 200 lines of code. Finally, the present experiment attempted to relate programming
performance to experiential factors, such as familiarity with other programming languages or rele-
vant programming tools and concepts.

METHOD

Participants

Fifty-four professional programmers at six different locations participated in this experiment.
Thirty were civilian employees, while 24 were employees of the military. The participants averaged
6.6 years of professional experience programming in Fortran, ranging from 1/2 year to 25 years
(SD = 6.1).

Experimental Design

In order to control for individual differences in performance, a within-subjects, 34 factorial design
was employed. Three types of control flow were defined for each of three programs, and each of
these nine versions was presented in three lengths with three different bugs, for a total of 81 dif-
ferent experimental conditions. The first 27 participants each saw three of the programs, exhaust-
ing the 81 conditions (Fig. 1). The second set of 27 participants replicated the conditions exactly
except that the order of presentation of the tasks was different in each case.

Learning effects were expected on the basis of results obtained in previous experiments of this
type (Sheppard, Curtis, Borst, Milliman, and Love, 1979; Sheppard and Love, 1977). Therefore,
the order of presentation of conditions was counterbalanced to assure that each level of each in-
dependent variable appeared as the first, second, or third task an equal number of times.

Procedure

A packet of materials prepared for each participant included: (1) written instructions on the ex-
perimental tasks, (2) a short tutorial of commands used in Fortran 77, (3) a short preliminary task
(Appendix. A), (4) three experimental tasks, and (5) a questionnaire concerning previous experience.

S. Sheppard
G.E.
2 of 25

PROGRAM LENGTH

1
ROOTS

2
ACCT

3
GRADER

SHORT

MEDIUM

LONG

SHORT

MEDIUM

LONG

SHORT

MEDIUM

LONG

NATURALLY
STRUCTURED

1

1

19

10

13

5

22

25

16

9

2

23

11

4

8

26

14

17

3

20

3

12

7

27

21

15

2

6

24

18

GRAPH-
STRUCTURED

1

20

14

6

7

23

17

11

2

26

2

15

9

24

27

18

1

5

21

12

3

3

25

15

16

4

19

22

10

8

FORTRAN 77

1

18

8

21

24

12

3

4

27

15

2

2

22

16

10

6

25

19

13

7

3

26

17

5

9

20

11

14

1

23

_ CONTROL
FLOW

- BUG

EACH CELL REPRESENTS ONE OF THE THREE TASKS GIVEN TO A PARTICIPANT

Figure 1. Assignments of 27 Participants in One Replication
of the Experimental Design

94
S. Sheppard
G.E.
3 of 25

All tasks included input files, a listing of the Fortran program with the embedded bug, a correct
output, and the erroneous output produced by this program. All differences between the correct
and erroneous output were circled on the erroneous output. Also included were explanatory
descriptions of any subroutines or functions not presented in the listing but referenced by the
program.

The 54 participants were divided into two groups of 27, each of which represented a complete
replication of the design. Within a group all participants were given-the same preliminary task.
Group 1 worked with an algorithm to find the greatest common divisor of two numbers and
Group 2 was given a simple sort algorithm. These preliminary tasks were provided to reduce
learning effects on the experimental tasks and to provide a basis for comparing the abilities of the
participants to perform a task of this nature.

Following the initial exercises, participants were presented with three separate programs comprising
their experimental tasks. Participants were allowed to work at their own pace, signalling the ex-
perimenter when they believed they had identified and corrected the bug. The experimenter veri-
fied all .corrections, and in the case of a mistake the participant was instructed to try again until
the task was successfully completed. The maximum time participants were allowed to work on

. a particular program was 45 minutes for the preliminary task and 60 minutes for each experimental
task. Time was measured to the nearest minute.

Independent Variables

Program. Three programs were selected for the generality of their content and their understand-
ability to programmers. The first program sorted and categorized alphabetic response data to a
questionnaire (Veldman, 1967). The second program, an accounting routine, produced income
and balance statements (Nolen, 1971). Program 3 kept track of students' test grades and calculated
their semester averages (Brooks, 1978). All programs were tested prior to the experiment.

Length. The inclusion of additional subroutines made it possible to present each program in three
different lengths. The shorter programs had 25-75 statements, medium programs contained 100-
150 statements, and the longer programs contained approximately 175-225 statements. (One
Fortran 77 version exceeded the 225 line limit by 8 lines because of the number of ELSE and
ENDIF statements required.)

Program listings included a two or three line explanation of any routine or function that was-
called by a program but not presented in,the experimental materials. Participants were told to
assume that missing routines worked correctly. All of the input and output files were presented
regardless of the length of the program. That is, for the shorter version, some of the input was
read in and some of the output was produced by subroutines which were not presented.

Complexity of Control Flow. Three versions of control flow performing identical tasks were
defined for each program. Two types of structures were implemented in Fortran IV, naturally
structured and graph-structured. A third version was written in Fortran 77 (Brainerd. 1978),
which includes the IF-THEN-ELSE, DO-WHILE, and DO-UNTIL constructs.

The Fortran 77 version of each program was implemented in a precisely structured manner. All
flow proceeded from top to bottom, and only three basis control constructs were allowed: the
linear sequence, structured selection, and structured iteration (Fig. 2).

S. Sheppard
G.E.

95 4 of 25

SEQUENCE: Q

SELECTION (IF-THEN-ELSE):

ITERATION (DO WHILE):

(DO UNTIL):

Figure 2. The Basic Structured Constructs

S. Sheppard
G E

5 of 25

The graph-structured version of each program was implemented in Fortran IV from the Fortran 77
version, replacing the special constructs but producing code for which the control flow graphs of
the two versions were identical. All nested relationships could be reduced through structured de-
composition to a linear sequence of unit complexity. A full discussion of reducibility is presented
by McCabe (1976).

Structured constructs are awkward to implement in Fortran IV (Tenny, 1974). In order to test a
more naturally structured flow, limited deviations were allowed in a third version of each pro-
gram. These deviations included such practices as branching into or out of a loop or decision and
multiple returns. Control flow graphs and the code for a section of a routine implemented in all
three versions of control flow are presented in Figures 3 and 4.

Each program was indented following the nesting patterns presented in the code. Thus, all DO
loops and branching instructions were indented. For naturally structured versions, decisions were
made arbitrarily about the importance of various constructions, and indenting was necessarily less
standardized than for the graph-structured and Fortran 77 versions.

Type of Bug. Three types of semantic bugs were chosen from a classification developed by
Hecht, Sturm, and Trattner (1978): computational, logical, and data errors. Bugs in each cate-
gory were defined for each of the three programs in order to maximize the similiarity of bugs
from a single category across programs. Computational bugs involved a sign change in an arith-
metic expression. Logic bugs were implemented by using the wrong logical operator in an IF
condition. Data bugs involved wrong index values for variables.

Each bug in this experiment was purposely designed to affect only a limited area of code. That
is, each calculation containing a bug occurred near the corresponding WRITE and FORMAT state-
ments. In no case did a bug produce errors in routines other than the one in which it was em-
bedded, and each bug appeared in only one line of code.

Individual Differences Measures '

Scores on the preliminary exercise were used as a measure of programming ability related to the
experimental task. Participants were also asked to complete a questionnaire about their pro-
gramming experience. The information required included specific types of experience, number
of years programming professionally in Fortran, number of statements in the longest Fortran and
non-Fortran programs written, the first programming language learned, and number of languages
learned. In addition, various programming concepts that appeared relevant to the experimental
programs were listed, and participants were asked to mark those with which they were familiar.

Complexity Metrics

Halstead's E. Using a program based-on Ottenstein (1976), Halstead's effort metric (E_) was com-
puted from the source code listings of the 27 experimental programs, representing three distinct
programs at three levels of structure and three different lengths. The computational formula was:

7?,N 2 (N 1 + N2)log2 (77t + Tj2)

S. Sheppard
G.E.
6 of 25

NATURALLY STRUCTURED

FORTRAN 77 AND
GRAPH-STRUCTURED

FORTRAN IV

Figure 3. Control Graphs for All Versions of Control Flow

98

S. Sheppard
G.E.
7 of 25

NATURALLY STRUCTURED

IT (AS2TOX .IS. 1 .OX..ASHBX .«?. NASSQf) CO TO 420
00 400 X-l.NSTOC*

IT (C3SZB .rO. ZB(XJ) «3 TO 440
400 ' cssTZsar

razsr 4io.c3aza
4ia roHRAT U30.3cx.' za Hosaea SOT n run visi

ca TO 4so
429 ?arST 4JO, CTSIS.ASNOM
4M rawiAT (iao.jox.-ia -.n.-

S3 TO 430
440
430

GRAPH- STRUCTURED

r-l
zr (xsata .LS. i .cat, ASJRTJ .sr. sxtsssi <a ?o 420

4ao if (catis .ZQ. ia<x: .ox. x .<=r. BSTSCS) ca 79 403

sa to 400
403. Zy (X .tZ. WT3BSJ «O TO 413

PSZ2TT 410.C3HIO
4ift rosHxr aao.jox, * za MCMSES scr rs rtizj *,ta]

ca TO 430
U3 sccar (X , ASTTOMJ -V

S3 TO 420
420 rarer 430, cati
4^0 roraiAT (lao.jox.'u '.za.* zz^rsu *isian»crr *.Z31
430 C3MTZSCOK

FORTRAN 77

t-i
IT .(ASMtni .a. l ,A»O. ASZTO* .ix. jussai) rsza

SO 400 WgXZJ (CEBIO .Jrt. t2(X] .AND. Z .LX. MS7CSI)
400 x-e*i

zj» (X -.cr. ssTnoji} TSSS
ntnrr 4io,caszs

^10 reiwAT (iHo.jox.- 10 .icisss SOT 21
" BUZ - - - - - - - - - - -

SCSX2(X,ASMCM}
CTOZ7

Z1SZ
- PRIST 430, CStl

430 rcJWAT aao.aox,-ra '.ia.«
oretr

4 so c=ar:»os

Figure 4. Examples of the Three Types of Control Flow

S. Sheppard

99 ?0
E

f25

where,

T? j = number of unique operators

T?2 = number of unique operands
Nj = total frequency of operators

N2 = total frequency of operands

McCabe's v(G). McCabe's metric is the classical graph-theory cyclomatic number defined as:

v(G) = # edges - # nodes + 2 (# connected components). McCabe presents two simpler
methods of calculating v(G): the number of predicate nodes plus 1 or the number of
regions computed from a planar graph of the control flow.

Length. The length of the program was the total number of Fortran statements, excluding
comments. The total number of executable statements was found to be highly correlated with
number of statements (r = 0.99, £ < 0.001).

Dependent Variable

The dependent variable was the number of minutes necessary for the participant to locate and
correct the bug.

Analysis

The analysis of data was conducted in two phases. The first phase was an experimental test of
the independent variables, while the second phase evaluated the software complexity metrics. In
the first phase, experimental data were analyzed in a hierarchical regression analysis. In this
analysis, domains of variables were entered sequentially into a multiple regression equation to de-
termine if each successive domain significantly improved the predictive capability of the equation
developed from domains already entered. Thus, the order in which domains were entered into the
analysis was important. Variables representing the different conditions of experimentally manipu-
lated variables were effect-coded (Kerlinger and Pedhazur, 1973),

The second phase of analysis investigated relationships between the time to find the bug and the
metrics, Halstead's JE, McCabe's v(G), and number of statements in the program. All correlations
are Pearson product-moment correlations.

RESULTS

Preliminary Tasks

Group 1 (Participants 1-27) and Group 2 (Participants 28-54) were given different preliminary
tasks. The two algorithms were of varying difficulty, producing significant differences in both
time to completion and percent of completions. Finding the bug in the greatest common divisor
algorithm required an average of 23.8 minutes with 22% failing to find the bug in 45 minutes,
while the sorting algorithm required only 14.6 minutes with only 4% failing to find the bug. How
ever, no significant differences in performance between the two groups occurred on the experi-
mental programs.

S. Sheppard

100 £0
Ef'25

Experimental Manipulations

The average time to locate bugs across all experimental conditions was 20.1 minutes (SD = 16.2).
All but six of the 162 experimental tasks comprising this experiment were completed successfully
during the allotted 60 minutes. These six conditions were not associated with any particular
factor.

Despite the use of a preliminary task to familiarize the participants with the experiment, a sig-
nificant order effect occurred (p < 0.04), indicating that learning took place during the first of
the three experimental tasks (Fig. 5).

Results of a hierarchical regression analysis of the independent variables on the time to find the
bug are presented in Table 1. Differences in solution time for the three programs were significant
(£ < 0.01). Finding the bug in the accounting program required an average of 15.1 minutes, 20.0
minutes in the program that sorted questionnaire data, and 25.0 minutes in the grade-scoring pro-
gram. Increasing the length of the programs had a modest effect (p_< 0.06) on the time to locate
and correct the error. The average time for the short program was 16 minutes, while the medium
and long programs required a mean of 21 and 23 minutes, respectively.

*

Averages for the three error categories were not significantly different from one another. How-
ever, a very large interaction occurred between type of bug and program (Fig. 6). This inter-
action accounted for the largest percent of variance (26%) of any of the experimental relation-
ships studied. No significant differences in performance resulted from the three types of control
flow.

Software Complexity Metrics

Intercorrelations among the three measures of software complexity were computed from the 27
different versions of the programs at both the subroutine and program levels (Table 2). Sub-
stantial intercorrelations were observed among Halstead's E, McCabe's v(G), and length at the
subroutine level. When computed on the total program, the correlation between length and
McCabe's v(G) increased, while the correlations for Halstead's E. with these two measures were
substantially smaller, especially with lines of code.

Correlations between time to find the bug and the complexity metrics were calculated for un-
aggregated data (three experimental tasks for each of the 54 participants, n_= 162) and for data
averaged over the six scores obtained for each program (Table 3). Correlations for the aggregated
data were much higher than those for the unaggregated scores. All three metrics predicted per-
formance equally well at the subroutine level. At the program level, however, E_ was the best
predictor, accounting for more than twice the variance in performance than did the length (56%
versus 27%, respectively). The variance accounted for by v(G) fell between these values (42%).
A stepwise multiple regression analysis indicated that length and v(G) added no increments to
the prediction afforded by E.

The scatterplot of performance with Halstead's E_ presented in Figure 7 suggested the existence of
a curvilinear trend in the data. The significance of this trend was tested using the second degree
polynomial regression approach suggested by both Cohen and Cohen (1975) and Kerlinger and
Pedhazer (1973) for investigating curvilinear relationships. A multiple correlation coefficient of
0.84 indicated that the curvilinear trend accounted for an additional 15% (p < 0.001) of the

S. Sheppard

101 10 of 25

25-1

o
D
CQ

I 20

c/j

15-

I
2

ORDER OF PRESENTATION

1
3

Figure 5. Order Effect on the Three Experimental Tasks

102.
S. Sheppard
G.E.
11 of 25

Table 1

Hierarchical Regression Analysis for Time to Find Bug

Variable

(1) Program

(2) Presentation order

(3) Type of bug

(4) Program X bug interaction

(5) Complexity of control flow

All variables

NOTE: n = 162. R2 column represents

*p < 0.05
*-*p < 0.01

df

2-

2

2

4

2

12

the separate

E2

0.06**

0.04*

0.00

0.26***

0.02

regression for each domain.

AR2

0.06**

0.04*

0.00

0.26***

0.02

0.38***

***p" < 0.001

103
S. Sheppard
G.E.
12 of 25

40-i
PROGRAM 3

30-

cc
O
cc
cc
UJ

Q
z

20-

00
LU
I-

10-

PROGRAM 2
PROGRAM 1

T I
COMPUTATIONAL LOGIC

TYPE OF ERROR

I
DATA

Figure 6. Program by Error Interaction

104
S. Sheppard
G.E.
13 of 25

.Table 2

Intercorrelations Among Complexity Metrics

Metrics

Subroutine:

v(G)

Length

Program:

v(G)

Length

Correlations

E

0.92***

0.89***

0.76***

0.56***

v(G)

0.81***

0.90***

NOTE: n = 27.

***p < 0.001

Table 3

Correlation Between Performance Time
and Complexity Metrics

Metric

Subroutine:

Halstead's E

McCabe's v(G)

Length

Program:

Halstead's E.

McCabe's v(G)

Length

**p < 0.01
***p"< 0.001

Correlations

Unaggregated
(n = 162)

0.25***

0.24***

0.25***

0.28***

0.25***

0.20**

105

Aggregated
(n = 27)

0.66***

0.63***

0.67***

0.75***

0.65***

0.52**

S. Sheppard
G.E.
14 of 25

40—1

30-

O

CD
uj 20 H

CJ
o

LLJ

1 10-1

• • • •
•

50 K
I I

TOOK 150K

HALSTEAD'S E

I
200 K

Figure 7. Scatterplot of Halstead'sJ: and Performance

106
S. Sheppard
G.E.
15 of 25

variance beyond that accounted for by a linear relationship. The prediction equation generated
from these data was:

minutes to find bug = 9.837 + 0.00239JL - 0.00000000079E2

However, with few data points in the right tail of this distribution for Halstead's E_, it is difficult
to extrapolate to the exact shape of the curvilinear trend. No curvilinear trend was detected with
either the lines of code or McCabe's v(G).

Experiential Factors

The re.lationship between complexity metrics and performance was investigated within groups of
programmers differing in years of professional experience programming in Fortran. As .a heuristic,
the participants were divided into two groups of approximately equal numbers: those with three
or fewer years experience and those with more than three years experience. The results presented
in Table 4 indicate that the complexity measures were more predictive of performance for less,
experienced programmers, especially when computed at the subroutine level.

Two measures of experience were also found to be related to the performance of less experienced
programmers (Table 5), but not to the performance of experienced programmers. The first such
measure was the number of programming languages the participant knew. The second metric was
the number of items checked on the experience questionnaire. The moderating effects of pro-
grammer experience may have been the result of greater variability in performance for programmers
with less experience (Fig. 8). This greater variability would increase the ability of correlational
tests to detect significant relationships (Cohen and Cohen, 1975).

DISCUSSION

Four factors were found to influence the speed with which programmers could find a bug in a
computer program. These factors were order of presentation, specific program, a program by
error interaction, and the complexity of the code as measured by software complexity metrics.
Type of bug and type of control flow, however, did not account for a significant proportion of
the variation in performance.

Variance in programmer performance associated with differences among the programs replicated
results from two previous experiments in this series (Sheppard, et al., 1979). However, a much
larger percent of the variance in performance was accounted for by a program by "error inter-
action. It appeared that some quality of the algorithm in which the bug was embedded in-
fluenced a programmer's ability to locate it. The time required to detect similar errors contained
in similar statements depended on the program in which the error was embedded. This result has
implications for the usefulness of various schemes for categorizing software bugs. The implied
value of these taxonomies is to identify properties of bugs which suggest how they are created or
how difficult they are to detect. Simple taxonomies based on syntactic relationships will probably
not prove sufficient for this purpose. The results of this experiment suggest that the detectability
of a bug depends on the context of the algorithm surrounding it. This contextual effect may
determine the optimal search strategy for finding the bug, and it is this search strategy that needs
to be understood if debugging performance is to be improved.

S. Sheppard
107 G.E.

16 of 25

Table 4

Correlations Between Performance and Complexity Metrics
Moderated by Years of Fortran Experience

Metrics

Subroutines:

Halstead's E

McCabe's v(G)

Length

Program:

Halstead's E.

McCabe's v(G)

Length

NOTE: Dividing the data into |

<3 Years
(n = 75)

0.39***

0.37***

0.33***

0.38***

0.29***

0.18

groups of prog

Correlations

>3 Years
(n = 87)

0.11

0.07

0.17

0.20*

0.21*

0.22*

yammers required that
scores be analyzed on individual tasks rather than on tasks
averaged by program. Thus, this analysis was performed on
the 75 experimental tasks performed by the 25 participants
with 3 or fewer years of Fortran experience and the 87 tasks
performed by the 29 participants with more than 3 years
experience.

*£ < 0.05
**p<0.01

***p < 0.001

Table 5

Relationships of Experiential Factors to Performance
for Programmers Differing in Fortran Experience

Relevant Experience

of Programming
Languages

Questionnaire Score

<3 Years
(n = 25)

-0.49**

-0.48**

>3 Years
(IT. = 29)

-0.03

-0.11

Total
(n.= 54)

-0.19

-0.33**

*p < 0.01

S. Sheppard

17 of 25

40-

co
LU

QC
o
IT
CC
LU

30-

20-

o
o_i
o
I-
LU

10-

0

5 10 15 20

FORTRAN EXPERIENCE (YEARS)

Figure 8. Scatterplot of Experience and Performance

I
25

109
S. Sheppard
G.E.
18 of 25

In the last section of the post-session questionnaire, the participants were asked to describe their
searching strategies for locating the bugs. Typically, one of two approaches was described. In
the first strategy the programmer tried to understand the whole program from beginning to end
before searching for the section with the bug. In the second strategy the programmer used approp-
riate clues in the output to go directly to the section containing the bug. The latter appeared to
be a much quicker strategy for debugging, but there were insufficient data for a meaningful statis-
tical analysis. In order to improve the debugging performance of programmers it will be important
not only to identify effective search strategies, but also to identify conditions under which they
will be differentially effective.

No significant differences were evident among the three types of top-down control flow tested
in this experiment. This finding agrees with previous results (Sheppard, et al., 1979) where dif-
ferences were found between top-down and convoluted control flow, but not between types of
top-down control flow. The minor deviations from strictly structured coding allowed in the natur-
ally structured version of this experiment did not adversely affect performance. Summarizing the
combined results of the three experiments, it would appear that the overall top-down quality of
the control flow is important to performance, but careful attention to strict structuring does not
appear to improve programmer performance significantly.

•

Since no difference was found between the graph-structured and Fortran 77 program versions, it
would appear that the newer constructs provide little additional aid in a debugging task beyond that
provided by a top-down flow. Only five of the 54 participants had previously used Fortran 77, so
a lack of familiarity with the new constructs may have prevented them from finding the bug more
quickly in Fortran 77 than in Fortran IV. However, immediately prior to the experiment a short
training session was conducted with each group of participants in which the new Fortran 77 con-
structs were discussed in detail. These constructs were similar to those implemented in Fortran
IV, and the participants' previous lack of familiarity with them was probably not a significant
factor in their performance.

Most laboratory studies exhibit a certain degree of artificiality that is necessary for experimental
control. In this experiment participants were told there was only one bug in a program. While
this situation differs from a normal programming environment, it should not have affected par-
ticipant's ability to perform the tasks. These experimental tasks may have been simpler to perform
than typical debugging problems since there was greater certainty about the bugs. Further, differ-
ences between the correct and erroneous output were clearly marked on the erroneous output, re-
ducing the amount of comparison necessary to discover what problems had occurred.

During a typical debugging problem a programmer could refer to the functional specifications for
a program or to comments included in the code. However, no such aids were made available in
this experiment. The participant's comprehension of the program's function had to be gleaned
from the code or from the input and output listings. The latter were designed to be self-
explanatory, with each section labeled appropriately; e.g., "FINAL COURSE GRADE" or "TRIAL
BALANCE." Although adding some artificiality to the experimental situation, the absence of
documentation was an attempt to equalize the amount of information provided by materials other
than the code.

Software Complexity Metrics

The results of this experiment not only replicated the results obtained in our previous research,
but also demonstrated that more viable results could be obtained when limitations in our earlier

S. Sheppard

no G-E-1JU 19 of 25

experimental procedures were overcome. For instance, our previous research was conducted ex-
clusively on small-sized (35-55 lines of code) programs, which seems to have limited the results
in three ways. First, the range of values on the factors studied in those programs seems to have
been too restricted to detect the size of relationships observed here. Second, the curvilinear re-
lationship observed in this experiment between Halstead's E and performance would not have been
observed if longer programs had not been used in the experimental tasks. Third, the extremely high
intercorrelation between length and Halstead's E. at the subroutine level suggests that both are
measuring program volume. With larger programs the information measured appears to differ; that
is, Halstead's .E.measures something in addition to, but inclusive of, factors measured by length.

Many small-sized programs can be grasped by the typical programmer as a cognitive gestalt. The
psychological complexity of such programs is adequately represented by the volume of the pro-
gram in terms of the number of lines of code. When the code grows beyond a subroutine, its
complexity to the programmer is better assessed by measuring constructs other than the number
of lines of code. This may result partly because programmers cannot grasp the entire program
within their mental spans at a single time. For larger programs the difficulty "programmers ex-
perience is better represented by counts of operators, operands, and control paths. Thus, as the
size of a program increases, Halstead's E_ seems to be a better measure of its psychological
complexity.

One possible explanation for the superior predictive ability of Halstead's E. is that the relationship
between program size and performance is curvilinear, and the algorithmic transformation with the
Halstead measure captures this relationship while lines of code does not. There was no evidence in
these data of a curvilinear relationship between lines of code and performance. On the other
hand, a curvilinear relationship did exist between Halstead's E_ and performance. This trend
suggests that as Halstead's E_ grows larger, a program becomes more psychologically complex, but
the increments in difficulty grow smaller and smaller. In the experimental task used in this de-
bugging experiment, there seemed to be an amount of time that was typically required to locate
a bug within a subroutine once the correct subroutine had been identified (approximately 16
minutes). Added to this baseline rate was the time required to identify the proper subroutine.
The curvilinearity of the relationship between time to find the bug and Halstead's E appeared to
result from the time required to isolate the problem subroutine.

The moderating effects of experiential factors also replicated the results found in the earlier ex-
periments. The metrics again proved to be better predictors of performance for programmers
with three or fewer years experience in Fortran than for those with more than three years ex-
perience. It was also possible to predict the performance of an individual programmer from job
history data. Several important factors seemed to be the number of languages a programmer had
used and familiarity with certain programming concepts. These predictions from job history
were also more valid for programmers who had three or fewer years of experience in Fortran.
Future work is needed to refine the use of experiential questionnaires for use in personnel
functions such as selection, assessment for training needs, and placement.

Code which is more psychologically complex may also be more error-prone and difficult to test.
The results of this experiment provide evidence that the software complexity metrics developed
by Halstead and McCabe are related to the difficulty programmers experience in locating errors
in code. Thus these metrics appear to be capable of satisfying several practical applications. They
can be used in providing feedback both to programmers about the complexity of the code they

S. Sheppard

1 1 1 G-E'11 J 20 of 25

have developed and to managers about the resources that will be necessary to maintain particular
sections of code. Further evaluative research needs to assess the validity of these uses in ongoing
software projects.

ACKNOWLEDGEMENTS

The authors are grateful to Judy McWilliams and Mary Anne Borst who helped with this experiment
and to Beverly Day for manuscript preparation. We are also grateful to Dr. Gerald Hahn for ad-
vice on experimental design, to Drs. Tom Love and Ben Shneiderman for advice on the experi-
mental tasks and procedures, and to Dr. John O'Hare for his careful review of this report. We
are especially appreciative of the efforts of Earl North and Leo Pompliano of General Electric;
Jan Gombert of Applied Urbanetics; Mrs. Joan Shields, Cols. William.Eglington, Earl Goetze and
Richard Blair, and Lt. Col. Pat Harris of the U.S. Air Force; and Capt. Webster and J. Rehbehn
of the U.S. Navy in providing the participants for this research. The support and encouragement
of both Gerald Dwyer and Lou Oliver has been vital to the success of this research.

This research was supported by the Office of Naval Research, Engineering Psychology Programs
(Contract #N0014-77-C-0158). The views expressed in this paper, however, are not necessarily
those of the Office of Naval Research or the Department of Defense.

REFERENCES

Brainerd, W., Fortran 77. Communications of the ACM. 1978, 21, 806-820.

Brooks, R. Unpublished algorithm. Irvine, CA: University of California at Irvine, Computer
Science Department, 1978.

Campbell, D. and J. C. Stanely, Experimental and quasi-experimental designs for research.
Chicago: Rand-McNally, 1967.

Carlson, W. E. and B. DeRoze, Defense system software research and development plan. Unpub-
lished manuscript, Arlington, VA: Defnese Advanced Research Projects Agency, September
1977.

Cohen, J. and P. Cohen, Applied multiple regression/correlation analysis for the behavioral,
sciences. New York: Wiley, 1975.

Curtis, B., S. B. Sheppard, P. Milliman, M. A. Borst, and T, Love, Measuring the psychological
complexity of software maintenance tasks with the Halstead and McCabe metrics. IEEE
Transactions on Software Engineering, 1979, 5^ 95-104.

Department of Defense requirements for high order computer programming languages: Revised
"IRONMAN." SIGPLAN Notices. 1977, 12, 39-54.

DeRoze, B., Software research and development technology in the Department of Defense. Paper
presented at the AIIE Conference on Software, Washington, D.C.: December 1977.

S. Sheppard
,]2 G.E.
11Z 21 of 25

Dijkstra, E. W., Notes on structured programming. In Structured programming, O. J. Dahl, E. W.
Dijkstra, and C. A. R. Hoare, (Ed.) New York: Academic, 1972.

Fitzsimmons, A. B. and L. T. Love, A review and evaluation of software science. ACM Computing
Survey, 1978, K), 3-18.

Gordon, R. D., A measure of mental effort related to program clarity. Unpublished doctoral dis-
sertation, Purdue University, 1977.

Gould, J. D., Some psychological evidence on how people debug computer programs. Inter-
national Journal of Man-Machine Studies, 1975,2, 151-182.

Gould, J. D. and P. Drongowski, An exploratory study of computer program debugging. Human
Factors, 1974, 16, 258-277.

Halstead, M. H., Elements of software science. New York: Elseiver North-Holland, 1977.

Hecht, H., W. A. Sturm, and S. Trattner, Reliability measurement during software development.
Redondo Beach, CA: Aerospace Corp., 1978.

Kerlinger, F. N. and E. J. Pedhazur, Multiple regression in behavioral research. New York: Holt,
Rinehart, and Winston, 1973.

McCabe, T. J., A complexity measure. IEEE Transactions on Software Engineering, 1976,_2,
308-320.

Nolen, R. L., Fortran IV computing and applications. Reading, MA: Addison-Wesley, 1971.

Ottenstein, K. J., A program to count operators and operands for ANSI-FORTRAN modules
(Tech. Rep. CSD-TR-196). West Lafayette, IN: Purdue University, Computer Science
Department, 1976.

Sheppard, S. B., B. Curtis, M. A. Borst, P. Milliman, and L. T. Love, First year results from a
research program on human factors in software engineering. In Proceedings of the i979
National Computer Conference, Montvale, NJ: AFIPS, 1979.

Sheppard, S. B. and L. T. Love, A preliminary experiment to test influences on human under-
standing of software. In Proceedings of the 21st Meeting of the Human Factors Society.
Santa Monica, CA: Human Factors Society, 1977.

Tenny, T., Structured programming in FORTRAN. Datamation, 1974, 20, 110-115.

The military software market (Rep. 427). New York: Frost and Sullivan, 1977.

Veldman, D. J., Fortran programming for the behavioral sciences. New York: Holt, Rinehart,
and Winston, 1967.

S. Sheppard
.,, G.E.
11:> 22 of 25

Wescourt, K. T. and L. Hemphill, Representing and teaching knowledge for troubleshooting/
debugging (Tech. Rep. 292). Stanford, CA: Stanford University, Institute for Mathematical
Studies in Social Science, 1978.

Youngs, E. A., Human errors in programming. International Journal of Man-Machine Studies,
1974, .6, 361-376.

S. Sheppard

114 GE
11H 23 of 25

APPENDIX A

PRETEST

S. Sheppard
G.E.

115 24 of 25

Sorting AIgorithir.

INPUT

DATAPRE

25

110

30

31
1

153
193

62
78

16
1

193
62
78

74

168
192
199
999

5
78
79
56

9
57

3

100
110
115
116
120
130
140
160
170
180
190
200
210
220
230
240
250
251
260
261
270
280

5
10

IS

20

100

101
110

IMPLICIT INTEGER (A-Z)
9IMEHSION AI50) ,8(50)
READ(*DATA?RE*,10) N
DO 5 I • 1, N
REACCDATAPRE'.IO) A(I)
FOS-A7II3)
DO 100 3 • 1, H
SMALL - A(l)
•>. « 1
DO 20 K - 2,N
IF(A(K) .LT. SMALL) GO TO 20
SHALL - A(K)
M • X
CONTINUE
3(J) • SMALL
A(MV • 1000
CONTISDE
00 101 I • 1, N
PRINT 110, 8(1)
FOR* AT (2X, 14)
STOP
END

CORRECT
OUTPUT

1
1
3
5
9
16
30
31
56
57
62
62
74
78
78
73
79
110
153
168
IS 2
1»3
193
199
999

INCORRECT
OUTPUT

999
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
luoo
1000
1000
1000
100C
1000
1000
1000
1000
1000
1000
1000
1000

116
S. Sheppard
G.E.
25 of 25

APPENDIX A

PRETEST

INTRODUCTION

DDI is a software development company currently in charge of maintaining the Advanced Orbit
Ephemeris Subsystem (AOES) for the USAF. This presentation will address the various methods
used in maintaining and upgrading the AOES, and to show how these methods reduce the number
of discrepancies in the AOES.

MAINTAINING THE EXISTING SYSTEM

Requirements are generated by the user community to either modify or upgrade the current AOES.
These requirements can modify existing programs or create programs which are then added.to the
AOES. The development of these requirements into software programs are delivered to the Air
Force on a scheduled date and this delivery is called a MODEL. Any discrepancies found in the
current or past models are corrected using machine code. The machine code is later converted to
a HOL (JOVIAL) for incorporation into a future model.

PROBLEMS FACED IN MAINTENANCE

The original programs were all written in a very non-structured manner. The program logic in
most of the original programs are very difficult to follow since more than one programmer was
involved in the original coding and subsequent modifications. The comments are obscure, non-
meaningful or absent in some instances. Furthermore, many discrepancies are corrected without
any thought to future modifications in the area of the fix or to the readability of the correction
(i.e., the correction seems to appear out of place in the area in which it occurs).

It mentioned in the introduction the objective of DDI was to try to alleviate discrepancies against
delivered models. To do this Structured Software Techniques, and the formation of a Quality
Assurance staff was implemented.

This presentation will describe these tools and their effectiveness and their weakness as they have
been observed.

STRUCTURED SOFTWARE TECHNIQUES

• CURRENT METHODS

• Top Down Design

• Software Engineering, group leader and programmer sit down and review the
requirement(s) for a new software program or for modifications to existing
software programs. All major areas of the requirements are identified, and

W. Fujii

11-7 DDI
117 1 of 13

these are further subdivided into lesser tasks. This process is repeated until
each task can be dealt with separately.

• Effectiveness

• Early in the development cycle all major interfaces for the requirements
can be identified.

/

• Any design trade-offs will surface and can be further analyzed.

• Having the programmers involved gives them a better understanding of
the possible problem areas and greater involvement in the final de-
livered product.

STRUCTURED PROGRAMMING TECHNIQUES

• The higher order language that is used by DDI is called JOVIAL. This language is
very readable, flexible and very well suited for structured programming. The only
constructs missing to truly make it an ideal structured langugae are the DO WHILE
and CASE instructions.

• The following guidelines are followed in the modification or development of
software.

• Comments

• Have meaningful comments.

• A comment should appear in at least every 3 or 4 lines of JOVIAL code,
for every conditional statement and block structure.

• Comment all items, arrays and tables,

o All Items, Variables, Arrays and Tables

• Alphabetized within their respective groups.

• Distinct and have meaningful names.

• Start them all in Column 4.

• Overlays and defines are to be at the end of the parameter list.

• Table entries should follow the indentation rules. Also, the presets of
of tables and arrays.

W. Fujii
DD1
2 of 13

JOVIAL Executable Statements

• Start in Column 4.

• Are assigned to one line, and if more than one line is required, indent
the continuation line at least 3 columns.

• GOTO statements should be used with discretion.

Conditional Statements and Block Structures

• Indent statements following conditional statements by a minimum of
3 columns.

• Indent block structure by 3 columns and identify the begin and end of
each block.

PROCS and CLOSES (Internal subroutines)

• Whenever there is a choice use PROCS.

• Start the Statement PROC or CLOSE in Column 1.

• Whenever feasible try to pass single input and single output parameter.

• Do not use the same input and output names in several PROCS.

• Attempt to alphabetize your PROCS at the end of your program.

• JOVIAL code, ITEMS, tables and arrays should start in Column 4.

• For each PROC or CLOSE describe its purpose and all of its input and
output parameters.

Statement Labels

• Start in Column 1.

• Be assigned an individual line.

• Have descriptive names.

e For those in PROCs or CLOSEs the first few characters of the name can
be used within that PROC or CLOSE.

W. Fujii
DDI

j J9 3 of I?

• Effectiveness

• Typographically, the program is more readable.

• Programs are more readily understood.

• Debugging and maintenance is greatly simplified.

• Modifications can be more easily performed.

STRUCTURED WALK-THROUGHS

• After the programmer has coded his program a walk through of the code is per-
formed between the programmer and the respective group leader.

• After the first dean compilation another program walk-through is exercised.

• During the final check-out phase a final walk-through is performed.

• A walk-through of the developmental test deck is also performed to insure that the
programmer test methods do indeed test those requirements and their interfaces of
the program.

• Effectiveness

• To insure that the programmer has coded to meet the requirements.

• Provide a check to determine if structured software guidelines are being
performed.

• Final walk-through is an insurance step to determine if any code change has
affected meeting software requirements.

• Development test deck walk-throughs insure more discrete or better testing
methods by collapsing or expanding certain tests, or by adding new tests.

PROGRAMMER NOTEBOOK

This is a text of information given to. created by or used by the programmer in
developing programs for a development cycle. The contents include:

• Schedules

• Requirements

• Aii design modifications

« Initial data flow

W. Fujii

120 • 4 of 13

• All documentation and their review comments and responses

• Any conversations concerning their program with outside agencies

• Data of program walk-throughs.

• Effectiveness

• The programmer, group leader, software engineer or project director can assess
materials used in the development of each program.

• Historical records provide insight into an individual's thoughts and logic.

• Programmers can refer to the notebook for insight for future modifications to
the same program.

• Especially useful if an individual leaves in the middle of the development and
another individual must finish the development.

TOP DOWN TESTING

• This is the method of testing of all top level program modules before lower level
modules are tested. Top down testing allows the testing of major interfaces first.
Coding for a program need not be complete before top down testing can start,
since stubs can be used.

• Not all testing is done in a top down manner, in particular instances where a lower
module performs some critical processing that is required at the upper levels,
those lower programs are tested first using a driver program. But once those lower
level programs have been tested, top down testing resumes.

• Effectiveness

« Both coding and testing can occur at the same time, and this leads to a better
distribution of testing time.

• Eliminates the need for driver programs to be written in order to check out the
actual program.

METHODS TRIED BUT NON-EFFECTIVE FOR OUR WORK

Pseudo Code or Program Design Language

JOVIAL language can be used as a program design language and many programmers were getting
too detail oriented and not looking at the structure of the program.

W. Fujii
PI DDI
l~ 5 of 13

Flow Charting

Again, flow charting made the programmers detail oriented and not structure oriented. Flow
block diagrams were only major blocks and decisions proved to be much more effective.

SOFTWARE QUALITY ASSURANCE GROUP

A software quality assurance (QA) group was created to formally validate the requirements of a
model. The QA staff is a separate group of individuals whose task is to support the software de-
velopment of the model. This is achieved by having a member of the QA staff sit in when the
top-down design of a program is being done. This will aid the QA member to understand the re-
quirements of the program. This understanding will be used in developing a formal system level
validation test of the requirements. The QA staff will be responsible to execute all of their vali-
dation tests to verify that the user requirements have been satisfied. The QA staff has the responsi-
bility to review all formal documentation produced by the programmers to insure that all require-
ments have been addressed and that the document conforms to the proper format. The QA group
will be the configuration control point for each model.

Effectiveness

• Formal validation of the software requirements are centralized in a single document.

• Independent testing of software programs before a formal release.

• All discrepancies found can be more easily duplicated and solved by the programmers
using a HOL.

• Configuration management control.

SUMMARY

Using certain structured techniques with the added independent testing performed by the QA
staff, DDI has reduced the number of discrepancies in modifying or upgrading our current system.
There is a very definite advantage to applying these techniques to existing systems.

W. Fujii
,„ DDI
122 6 of 13

• MAINTAINING THE EXISTING SYSTEM

• MODIFICATION TO EXISTING SOFTWARE

• DEVELOPMENT OF NEW SOFTWARE TO AUGMENT THE CURRENT
SYSTEM

• CORRECT DESCREPANCIES FOUND IN THE CURRENT SYSTEM

• PROBLEMS FACED IN MAINTENANCE

• ALL ORIGINAL PROGRAMS WRITTEN WITHOUT STRUCTURED
TECHNIQUES

• PROGRAM LOGIC IS DIFFICULT TO FOLLOW

• OBSCURE COMMENTS OR NO COMMENTS

• PATCHED AREAS

• STRUCTURED SOFTWARE TECHNIQUES

• TOP DOWN DESIGN

« MAJOR AREAS ARE IDENTIFIED

• EFFECTIVENESS

•• OVERVIEW OF THE PROGRAM STRUCTURE

• INTERFACES CAN BE IDENTIFIED EARLY

• DESIGN TRADE-OFFS SURFACE

- • EARLY PROGRAMMER INVOLVEMENT

•« DRAWBACK

• TOO MUCH MODULARIZATION

W. Fujii
DDI

123 7 of 13

• STRUCTURED SOFTWARE TECHNIQUES

• STRUCTURED PROGRAMMING TECHNIQUES

•• HOL --JOVIAL

• COMMENTS ARE TO BE MEANINGFUL AND PLENTIFUL

• INDENTATION OF CODE FOR CONDITIONAL STATEMENTS
AND BLOCK STRUCTURES

• MEANINGFUL NAMES FOR STATEMENT LABELS, INTERNAL.
SUBROUTINES, AMD VARIABLES

• EFFECTIVENESS

• READABLE PROGRAMS

• PROGRAM LOGIC MORE READILY UNDERSTOOD

• . DEBUGGING AND MAINTENANCE SIMPLIFIED

• MODIFICATIONS MORE EASILY PERFORMED

• DRAWBACKS

• SYSTEM AND CORE LIMITATION

• TIMING REQUIREMENTS

W. Fujii
,.. DDI
124 8 of 13

STRUCTURED SOFTWARE TECHNIQUES

• STRUCTURED WALK-THROUGHS

• PROGRAM WALK-THROUGHS -

•• ' AT LEAST THREE TIMES

• DEVELOPMENT TEST DECK WALK-THROUGH

• EFFECTIVENESS

• PROGRAMMER HAS CODE TO MEET REQUIREMENTS

•• TESTING OF CODE WHICH SATISFY REQUIREMENTS

• PROGRAMMER NOTEBOOK

• TEXT OF INFORMATION USED TO SATISFY REQUIREMENTS

• EFFECTIVENESS

• HISTORICAL ACCOUNT OF PROGRAM DEVELOPMENT

• USEFUL FOR SUBSEQUENT WORK ON THE SAME PROGRAM

« USEFUL IF PROGRAMMER LEAVES BEFORE COMPLETION

• DRAWBACK

• PROGRAMMERS DO NOT ALWAYS UPDATE

W. Fujii

125 DDI

'•" 9 of 13

STRUCTURED SOFTWARE TECHNIQUES

• TOP DOWN TESTING'

• USE TOP LEVEL MODULES TO TEST LOWER LEVEL MODULES

• EFFECTIVENESS

• MAJOR INTERFACES ARE TESTED FIRST

• CODING DOES NOT HAVE TO BE COMPLETE, USE OF STUBS

•: ELIMINATION OF DRIVER PROGRAMS

•• BETTER DISTRIBUTION OF TESTING TIME

• DRAWBACK

• NOT ALL TESTING CAN BE DONE TOP DOWN

W. Fujii
DDI

126 10 of 13

C/3

ODOOccQ
.

LLJ
CC

—
 in

ooU
J

CO
to

Q
.

U
J

C
C

OC
O

COin«

e/3_iH
I

Q

inqinqin

Iin
ino

in05
inoo

\in
inC

O
inin

Iin
inn

inCM
rin

in

121
W

. Fujii
D

D
I

11 of
13

• SOFTWARE QUALITY ASSURANCE (QA)

• SUPPORT SOFTWARE DEVELOPMENT .

f UNDERSTAND REQUIREMENTS

• FORMAL VALIDATION OF SOFTWARE REQUIREMENTS USING
SYSTEM LEVEL TESTING

•• REVIEW DOCUMENTATION

• CONFIGURATION CONTROL

• EFFECTIVENESS

• FORMAL TESTING IS CENTRALIZED • •

' INDEPENDENT TEST

• MINIMIZE DELIVERY PROBLEMS

W. Fujii

08 DD1
128. 12 of 13

GOUDQOCCa.LUcci

—
 in

ooLUO1LUC
C

OooQ

LO

'IT
)

CO_JLUQ
.

LO

_
 pinpIT

)

Iin
L

O
O

Iin
LOoo

to
to(O

inin
in

inCO
inCM

Iin
in

129
W

. Fujii
D

D
I

13 of
13

