334 research outputs found

    Examining Sub-Flash Properties of Lightning from GLM for Tracking and Intensification Characterization of Thunderstorms

    Get PDF
    Current methodologies for operational use of lightning are developed using ground-based networks. Lightning detectors measure different characteristics of the flash, thus they don't observe the same lightning event in the same manner: i.e., flash rates from NDLN (National Lightning Detection Network (R)) will typically not match flash rates from GLM (Geostationary Lightning Mapper) because each sensor is measuring different characteristics (EM (Electromagnetic) radiation vs. optical). Resolution/timeliness of space-based sensor data will change our "rules of thumb" for operational use: Lightning safety - how does the 2D mapping of lightning enhance lightning safety metrics; Is the super-fast input of data (20s) useful for decision-makers, including (non-AWIPS (Advanced Weather Interactive Processing System) -users) non-mets

    Characteristics of Lightning Within Electrified Snowfall Events Using Lightning Mapping Arrays

    Get PDF
    This study examined 34 lightning flashes within four separate thundersnow events derived from lightning mapping arrays (LMAs) in northern Alabama, central Oklahoma, and Washington, DC. The goals were to characterize the in-cloud component of each lightning flash, as well as the correspondence between the LMA observations and lightning data taken from national lightning networks like the National Lightning Detection Network (NLDN). Individual flashes were examined in detail to highlight several observations within the dataset. The study results demonstrated that the structures of these flashes were primarily normal polarity. The mean area encompassed by this set of flashes is 375 square kilometers, with a maximum flash extent of 2300 square kilometers, a minimum of 3 square kilometers, and a median of 128 square kilometers. An average of 2.29 NLDN flashes were recorded per LMA-derived lightning flash. A maximum of 11 NLDN flashes were recorded in association with a single LMA-derived flash on 10 January 2011. Additionally, seven of the 34 flashes in the study contain zero NLDN identified flashes. Eleven of the 34 flashes initiated from tall human-made objects (e.g., communication towers). In at least six lightning flashes, the NLDN detected a return stroke from the cloud back to the tower and not the initial upward leader. This study also discusses lightning's interaction with the human built environment and provides an example of lightning within heavy snowfall observed by GOES-16's Geostationary Lightning Mapper

    Discovery of sarolaner:A novel, Orally administered, broad-spectrum, Isoxazoline ectoparasiticide for dogs

    Get PDF
    AbstractThe novel isoxazoline ectoparasiticide, sarolaner, was identified during a lead optimization program for an orally-active compound with efficacy against fleas and ticks on dogs. The aim of the discovery program was to identify a novel isoxazoline specifically for use in companion animals, beginning with de novo synthesis in the Zoetis research laboratories. The sarolaner molecule has unique structural features important for its potency and pharmacokinetic (PK) properties, including spiroazetidine and sulfone moieties. The flea and tick activity resides in the chirally pure S-enantiomer, which was purified to alleviate potential off-target effects from the inactive enantiomer. The mechanism of action was established in electrophysiology assays using CHO-K1 cell lines stably expressing cat flea (Ctenocephalides felis) RDL (resistance-to-dieldrin) genes for assessment of GABA-gated chloride channel (GABACls) pharmacology. As expected, sarolaner inhibited GABA-elicited currents at both susceptible (CfRDL-A285) and resistant (CfRDL-S285) flea GABACls with similar potency. Initial whole organism screening was conducted in vitro using a blood feeding assay against C. felis. Compounds which demonstrated robust activity in the flea feed assay were subsequently tested in an in vitro ingestion assay against the soft tick, Ornithodoros turicata. Efficacious compounds which were confirmed safe in rodents at doses up to 30mg/kg were progressed to safety, PK and efficacy studies in dogs. In vitro sarolaner demonstrated an LC80 of 0.3μg/mL against C. felis and an LC100 of 0.003μg/mL against O. turicata. In a head-to-head comparative in vitro assay with both afoxolaner and fluralaner, sarolaner demonstrated superior flea and tick potency. In exploratory safety studies in dogs, sarolaner demonstrated safety in dogs≥8 weeks of age upon repeated monthly dosing at up to 20mg/kg. Sarolaner was rapidly and well absorbed following oral dosing. Time to maximum plasma concentration occurred within the first day post-dose. Bioavailability for sarolaner was calculated at >85% and the compound was highly protein bound (>99.9%). The half-life for sarolaner was calculated at 11–12 days. Sarolaner plasma concentrations indicated dose proportionality over the range 1.25–5mg/kg, and these same doses provided robust efficacy (>99%) for ≥35days against both fleas (C. felis) and multiple species of ticks (Rhipicephalus sanguineus, Ixodes ricinus and Dermacentor reticulatus) after oral administration to dogs. As a result of these exploratory investigations, sarolaner was progressed for development as an oral monthly dose for treatment and control of fleas and ticks on dogs

    Type IIb Supernova SN 2011dh: Spectra and Photometry from the Ultraviolet to the Near-Infrared

    Get PDF
    We report spectroscopic and photometric observations of the Type IIb SN 2011dh obtained between 4 and 34 days after the estimated date of explosion (May 31.5 UT). The data cover a wide wavelength range from 2,000 Angstroms in the UV to 2.4 microns in the NIR. Optical spectra provide line profiles and velocity measurements of HI, HeI, CaII and FeII that trace the composition and kinematics of the SN. NIR spectra show that helium is present in the atmosphere as early as 11 days after the explosion. A UV spectrum obtained with the STIS reveals that the UV flux for SN 2011dh is low compared to other SN IIb. The HI and HeI velocities in SN 2011dh are separated by about 4,000 km/s at all phases. We estimate that the H-shell of SN 2011dh is about 8 times less massive than the shell of SN 1993J and about 3 times more massive than the shell of SN 2008ax. Light curves (LC) for twelve passbands are presented. The maximum bolometric luminosity of 1.8±0.2×10421.8 \pm 0.2 \times 10^{42} erg s−1^{-1} occurred about 22 days after the explosion. NIR emission provides more than 30% of the total bolometric flux at the beginning of our observations and increases to nearly 50% of the total by day 34. The UV produces 16% of the total flux on day 4, 5% on day 9 and 1% on day 34. We compare the bolometric light curves of SN 2011dh, SN 2008ax and SN 1993J. The LC are very different for the first twelve days after the explosions but all three SN IIb display similar peak luminosities, times of peak, decline rates and colors after maximum. This suggests that the progenitors of these SN IIb may have had similar compositions and masses but they exploded inside hydrogen shells that that have a wide range of masses. The detailed observations presented here will help evaluate theoretical models for this supernova and lead to a better understanding of SN IIb.Comment: 23 pages, 14 figures, 9 tables, accepted by Ap
    • …
    corecore