8,751 research outputs found
A comparison of implicit numerical methods for solving the transient spherical diffusion equation
Comparative numerical temperature results obtained by using two implicit finite difference procedures for the solution of the transient diffusion equation in spherical coordinates are presented. The validity and accuracy of these solutions are demonstrated by comparison with exact analytical solutions
Surface heat flux determination: An analytical and experimental study using a single embedded thermocouple
A numerical method by which data from a single embedded thermocouple can be used to predict the transient thermal environment for both high- and low-conductivity materials is described. The results of an investigation performed to verify the method clearly demonstrate that accurate, transient, surface heating conditions can be obtained from a thermocouple l.016 centimeters from the heating surface in a low-conductivity material. Space shuttle orbiter thermal protection system materials having temperature- and pressure-dependent properties, and typical orbiter entry heating conditions were used to verify the accuracy of the analytical procedure. Analytically generated, as well as experimental, data were used to compare predicted and measured surface temperatures
An efficiency study on obtaining the minimum weight of a thermal protection system
Three minimizing techniques are evaluated to determine the most efficient method for minimizing the weight of a thermal protection system and for reducing computer usage time. The methods used (numerical optimization and nonlinear least squares) for solving the minimum-weight problem involving more than one material and more than one constraint are discussed. In addition, the one material and one constraint problem is discussed
Effective thermal conductivity determination for low-density insulating materials
That nonlinear least squares can be used to determine effective thermal conductivity was demonstrated, and a method for assessing the relative error associated with these predicted values was provided. The differences between dynamic and static determination of effective thermal conductivity of low-density materials that transfer heat by a combination of conduction, convection, and radiation were discussed
Determination of surface heat flux using a single embedded thermocouple
An implicit numerical procedure was developed for predicting the transient heat flux to a material using a single embedded thermocouple. The accuracy of the method was demonstrated by comparisons with analytically generated test data
Orbiter thermal protection system
The major material and design challenges associated with the orbiter thermal protection system (TPS), the various TPS materials that are used, the different design approaches associated with each of the materials, and the performance during the flight test program are described. The first five flights of the Orbiter Columbia and the initial flight of the Orbiter Challenger provided the data necessary to verify the TPS thermal performance, structural integrity, and reusability. The flight performance characteristics of each TPS material are discussed, based on postflight inspections and postflight interpretation of the flight instrumentation data. Flights to date indicate that the thermal and structural design requirements for the orbiter TPS are met and that the overall performance is outstanding
Prediction of rigid silica based insulation conductivity
A method is presented for predicting the thermal conductivity of low density, silica based fibrous insulators. It is shown that the method can be used to extend data values to the upper material temperature limits from those obtained from the test data. It is demonstrated that once the conductivity is accurately determined by the analytical model the conductivity for other atmospheres can be predicted. The method is similar to that presented by previous investigators, but differs significantly in the contribution due to gas and internal radiation
Space shuttle orbiter leading-edge flight performance compared to design goals
Thermo-structural performance of the Space Shuttle orbiter Columbia's leading-edge structural subsystem for the first five (5) flights is compared with the design goals. Lessons learned from thse initial flights of the first reusable manned spacecraft are discussed in order to assess design maturity, deficiencies, and modifications required to rectify the design deficiencies. Flight data and post-flight inspections support the conclusion that the leading-edge structural subsystem hardware performance was outstanding for the initial five (5) flights
TPS design for aerobraking at Earth and Mars
An investigation was made to determine the feasibility of using an aerobrake system for manned and unmanned missions to Mars, and to Earth from Mars and lunar orbits. A preliminary thermal protection system (TPS) was examined for five unmanned small nose radius, straight bi-conic vehicles and a scaled up Aeroassist Flight Experiment (AFE) vehicle aerocapturing at Mars. Analyses were also conducted for the scaled up AFE and an unmanned Sample Return Cannister (SRC) returning from Mars and aerocapturing into Earth orbit. Also analyzed were three different classes of lunar transfer vehicles (LTV's): an expendable scaled up modified Apollo Command Module (CM), a raked cone (modified AFT), and three large nose radius domed cylinders. The LTV's would be used to transport personnel and supplies between Earth and the moon in order to establish a manned base on the lunar surface. The TPS for all vehicles analyzed is shown to have an advantage over an all-propulsive velocity reduction for orbit insertion. Results indicate that TPS weight penalties of less than 28 percent can be achieved using current material technology, and slightly less than the most favorable LTV using advanced material technology
Reinforced carbon-carbon oxidation behavior in convective and radiative environments
Reinforced carbon-carbon, which is used as thermal protection on the space shuttle orbiter wing leading edges and nose cap, was tested in both radiant and plasma arcjet heating test facilities. The test series was conducted at varying temperatures and pressures. Samples tested in the plasma arcjet facility had consistently higher mass loss than those samples tested in the radiant facility. A method using the mass loss data is suggested for predicting mission mass loss for specific locations on the Orbiter
- …