96 research outputs found

    Dye Trace Study of Karst Groundwater Flow at Mystery Spring and Wildcat Culvert in Lexington, Fayette County, Kentuciy

    Get PDF
    The main purpose of this study was to test connectivity from a sinkhole by William T. Young Library on the University of Kentucky’s campus to Mystery Spring (1.5 miles away) near RJ Corman Railroad in Town Branch, and measure groundwater velocity thereto. A secondary aspect of the study was to measure travel time from a storm drain at the bottom of the aforementioned campus sinkhole to “Wildcat Culvert” which discharges into Town Branch (100 meters downstream of Mystery Spring), and to observe if the two were connected. A map of the groundwater flow patterns in the area was published in 1996 based on mostly unpublished dye trace research. The last known work on Mystery Spring was conducted in 1989 by James Currens at Kentucky Geological Survey. In 1994, the William T. Young Library was built near the subject sinkhole that involved the construction of over 200 concrete and steel pylons, potentially disrupting the previous groundwater flow. In order to determine whether the construction affected karst conduits in the area, we conducted a second dye trace study in July of 2018 recreating, in many ways, the unpublished study from 1989. 90 grams of dye was injected into the two locations noted near the library (the sinkhole and a storm drain at the bottom of the razed sinkhole) and charcoal receptors, as well as an infrared probe, were placed at the predicted outflow points. Probe results at Mystery Spring were inconclusive but dye appeared in the charcoal receptors within 14 hours after injection at concentrations of 2.1 ppb. Eosine dye began appearing in visible quantities within 2 hours of the injection (6:00 p.m. on July 6th) at the outflow, “Wildcat Culvert,” which is connected to the storm drain. No connection was observed between the sinkhole and the storm drain.Trende M. Garrison, Faculty mento

    A Geologically Based Indoor-Radon Potential Map of Kentucky

    Get PDF
    We combined 71,930 short-term (median duration 4 days) home radon test results with 1:24,000-scale bedrock geologic map coverage of Kentucky to produce a statewide geologically based indoor-radon potential map. The test results were positively skewed with a mean of 266 Bq/m3, median of 122 Bq/m3, and 75th percentile of 289 Bq/m3. We identified 106 formations with ≥10 test results. Analysis of results from 20 predominantly monolithologic formations showed indoor-radon concentrations to be positively skewed on a formation-by-formation basis, with a proportional relationship between sample means and standard deviations. Limestone (median 170 Bq/m3) and dolostone (median 130 Bq/m3) tended to have higher indoor-radon concentrations than siltstones and sandstones (median 67 Bq/m3) or unlithified surficial deposits (median 63 Bq/m3). Individual shales had median values ranging from 67 to 189 Bq/m3; the median value for all shale values was 85 Bq/m3. Percentages of values falling above the U.S. Environmental Protection Agency (EPA) action level of 148 Bq/m3 were sandstone and siltstone: 24%, unlithified clastic: 21%, dolostone: 46%, limestone: 55%, and shale: 34%. Mississippian limestones, Ordovician limestones, and Devonian black shales had the highest indoor-radon potential values in Kentucky. Indoor-radon test mean values for the selected formations were also weakly, but statistically significantly, correlated with mean aeroradiometric uranium concentrations. To produce a map useful to nonspecialists, we classified each of the 106 formations into five radon-geologic classes on the basis of their 75th percentile radon concentrations. The statewide map is freely available through an interactive internet map service

    Impact of environmental and genetic factors on the scale shape of zebrafish, Danio rerio (Hamilton 1822): A geometric morphometric study

    Get PDF
    Intraspecific morphological variability may reflect either genetic divergence among groups of individuals or response of individuals to environmental circumstances within the frame of phenotypic plasticity. Several studies were able to discriminate wild fish populations based on their scale shape. Here we examine whether the variations in the scale shape in fish populations could be related to genetic or environmental factors, or to both of them. In the first experiment, two inbred lines of zebrafish Danio rerio (Hamilton 1822) reared under identical environmental conditions were compared. Secondly, to find out what effect environmental factors might have, offsprings were divided into two groups and reared on different diets for 12 weeks. Potential recovery of scales from an environmental effect was also assessed. Experimental groups could successfully be distinguished according to the shape of scales in both experiments, and the results showed that both genetic and environmental factors may notably influence scale shape. It was concluded that scale shape analysis might be used as an explanatory tool to detect potential variability of environmental influences impacting genetically homogeneous groups of fish. However, due to its sensitivity to environmental heterogeneity, the applicability of this technique in identifying intraspecific stock membership of fish could be limited

    Impact of inactivity and exercise on the vasculature in humans

    Get PDF
    The effects of inactivity and exercise training on established and novel cardiovascular risk factors are relatively modest and do not account for the impact of inactivity and exercise on vascular risk. We examine evidence that inactivity and exercise have direct effects on both vasculature function and structure in humans. Physical deconditioning is associated with enhanced vasoconstrictor tone and has profound and rapid effects on arterial remodelling in both large and smaller arteries. Evidence for an effect of deconditioning on vasodilator function is less consistent. Studies of the impact of exercise training suggest that both functional and structural remodelling adaptations occur and that the magnitude and time-course of these changes depends upon training duration and intensity and the vessel beds involved. Inactivity and exercise have direct “vascular deconditioning and conditioning” effects which likely modify cardiovascular risk

    Measuring the population burden of injuries-implications for global and national estimates: A multicentre prospective UK longitudinal study

    Get PDF
    Current methods of measuring the population burden of injuries rely on many assumptions and limited data available to the global burden of diseases (GBD) studies. The aim of this study was to compare the population burden of injuries using different approaches from the UK Burden of Injury (UKBOI) and GBD studies.The UKBOI was a prospective cohort of 1,517 injured individuals that collected patient-reported outcomes. Extrapolated outcome data were combined with multiple sources of morbidity and mortality data to derive population metrics of the burden of injury in the UK. Participants were injured patients recruited from hospitals in four UK cities and towns: Swansea, Nottingham, Bristol, and Guildford, between September 2005 and April 2007. Patient-reported changes in quality of life using the EQ-5D at baseline, 1, 4, and 12 months after injury provided disability weights used to calculate the years lived with disability (YLDs) component of disability adjusted life years (DALYs). DALYs were calculated for the UK and extrapolated to global estimates using both UKBOI and GBD disability weights. Estimated numbers (and rates per 100,000) for UK population extrapolations were 750,999 (1,240) for hospital admissions, 7,982,947 (13,339) for emergency department (ED) attendances, and 22,185 (36.8) for injury-related deaths in 2005. Nonadmitted ED-treated injuries accounted for 67% of YLDs. Estimates for UK DALYs amounted to 1,771,486 (82% due to YLDs), compared with 669,822 (52% due to YLDs) using the GBD approach. Extrapolating patient-derived disability weights to GBD estimates would increase injury-related DALYs 2.6-fold.The use of disability weights derived from patient experiences combined with additional morbidity data on ED-treated patients and inpatients suggests that the absolute burden of injury is higher than previously estimated. These findings have substantial implications for improving measurement of the national and global burden of injury

    Vascular Remodeling in Health and Disease

    Get PDF
    The term vascular remodeling is commonly used to define the structural changes in blood vessel geometry that occur in response to long-term physiologic alterations in blood flow or in response to vessel wall injury brought about by trauma or underlying cardiovascular diseases.1, 2, 3, 4 The process of remodeling, which begins as an adaptive response to long-term hemodynamic alterations such as elevated shear stress or increased intravascular pressure, may eventually become maladaptive, leading to impaired vascular function. The vascular endothelium, owing to its location lining the lumen of blood vessels, plays a pivotal role in regulation of all aspects of vascular function and homeostasis.5 Thus, not surprisingly, endothelial dysfunction has been recognized as the harbinger of all major cardiovascular diseases such as hypertension, atherosclerosis, and diabetes.6, 7, 8 The endothelium elaborates a variety of substances that influence vascular tone and protect the vessel wall against inflammatory cell adhesion, thrombus formation, and vascular cell proliferation.8, 9, 10 Among the primary biologic mediators emanating from the endothelium is nitric oxide (NO) and the arachidonic acid metabolite prostacyclin [prostaglandin I2 (PGI2)], which exert powerful vasodilatory, antiadhesive, and antiproliferative effects in the vessel wall

    Safety and Pharmacokinetics of Single Doses of (+)-Calanolide A, a Novel, Naturally Occurring Nonnucleoside Reverse Transcriptase Inhibitor, in Healthy, Human Immunodeficiency Virus-Negative Human Subjects

    No full text
    (+)-Calanolide A is a novel, naturally occurring, nonnucleoside inhibitor of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase first isolated from a tropical tree (Calophyllum lanigerum) in the Malaysian rain forest. Previous studies have demonstrated that (+)-calanolide A has specific activity against the reverse transcriptase of HIV-1 and a favorable safety profile in animals. In addition, (+)-calanolide A exhibits a unique HIV-1 resistance profile in vitro. The safety and pharmacokinetics of (+)-calanolide A was examined in four successive single-dose cohorts (200, 400, 600, and 800 mg) in healthy, HIV-negative volunteers. In this initial phase I study, the toxicity of (+)-calanolide A was minimal in the 47 subjects treated. Dizziness, taste perversion, headache, eructation, and nausea were the most frequently reported adverse events. These events were not all judged to be related to study medication nor were they dose related. While 51% of subjects reported mild and transient dizziness, in many cases this appeared to be temporally related to phlebotomy. Calculation of the terminal-phase half-life (t(1/2)) was precluded by intrasubject variability in the 200-, 400-, and 600-mg dose cohorts but was approximately 20 h for the 800-mg dose group. (+)-Calanolide A was rapidly absorbed following administration, with time to maximum concentration of drug in plasma (T(max)) values occurring between 2.4 and 5.2 h postdosing depending on the dose. Plasma levels of (+)-calanolide A at all dosing levels were quite variable; however, both the mean concentration in plasma (C(max)), and the area under the plasma concentration-time curve increased proportionately in relation to the dose. Although raw plasma drug levels were higher in women than in men, when doses were normalized for body mass, the pharmacokinetic profiles were virtually identical with those observed for males. In general, levels of (+)-calanolide A in human plasma were higher than would have been predicted from animal studies, yet the safety profile remained benign. In conclusion, this study demonstrated the safety and favorable pharmacokinetic profile of single doses of (+)-calanolide A in healthy, HIV-negative individuals
    corecore