9 research outputs found

    Combining second order matching and first order E-matching

    No full text
    Programme 2 : Calcul symbolique, programmation et genie logicielAvailable at INIST (FR), Document Supply Service, under shelf-number : 14802 E, issue : a.1993 n.2012 / INIST-CNRS - Institut de l'Information Scientifique et TechniqueSIGLEFRFranc

    The (n,gamma) campaigns at EXILL

    Get PDF
    This is an open article distributed under the terms of the Creative Commons Attribution Licence 4.0International audienceAt the PF1B cold neutron beam line at the Institut Laue Langevin, the EXILL array consisting ofEXOGAM, GASP and ILL-Clover detectors was used to perform (n,γ\gamma) measurements at very high coincidencerates. About ten different reactions were measured in autumn 2012 using a highly collimated cold neutronbeam. In spring 2013, the EXOGAM array was combined with 16 LaBr3(Ce) scintillators in theEXILL&FATIMA campaign for the measurement of lifetimes using the generalised centroid differencemethod. We report on the properties of the set-ups and present first results from both campaigns

    The (n,gamma) campaigns at EXILL

    No full text
    At the PF1B cold neutron beam line at the Institut Laue Langevin, the EXILL array consisting of EXOGAM, GASP and ILL-Clover detectors was used to perform (n,gamma) measurements at very high coincidence rates. About ten different reactions were measured in autumn 2012 using a highly collimated cold neutron beam. In spring 2013, the EXOGAM array was combined with 16 LaBr3(Ce) scintillators in the EXILL&FATIMA campaign for the measurement of lifetimes using the generalised centroid difference method. We report on the properties of the set-ups and present first results from both campaigns

    EXILL—a high-efficiency, high-resolution setup for γ\gamma-spectroscopy at an intense cold neutron beam facility

    Get PDF
    In the EXILL campaign a highly efficient array of high purity germanium (HPGe) detectors was operated at the cold neutron beam facility PF1B of the Institut Laue-Langevin (ILL) to carry out nuclear structure studies, via measurements of γ-rays following neutron-induced capture and fission reactions. The setup consisted of a collimation system producing a pencil beam with a thermal capture equivalent flux of about 10(8) n s(−)(1)cm(−)(2) at the target position and negligible neutron halo. The target was surrounded by an array of eight to ten anti-Compton shielded EXOGAM Clover detectors, four to six anti-Compton shielded large coaxial GASP detectors and two standard Clover detectors. For a part of the campaign the array was combined with 16 LaBr(3):(Ce) detectors from the FATIMA collaboration. The detectors were arranged in an array of rhombicuboctahedron geometry, providing the possibility to carry out very precise angular correlation and directional-polarization correlation measurements. The triggerless acquisition system allowed a signal collection rate of up to 6 × 10(5) Hz. The data allowed to set multi-fold coincidences to obtain decay schemes and in combination with the FATIMA array of LaBr(3):(Ce) detectors to analyze half-lives of excited levels in the pico- to microsecond range. Precise energy and efficiency calibrations of EXILL were performed using standard calibration sources of (133)Ba, (60)Co and (152)Eu as well as data from the reactions (27)Al(n,γ)(28)Al and (35)Cl(n,γ)(36)Cl in the energy range from 30 keV up to 10 MeV

    EXILL—a high-efficiency, high-resolution setup for γ-spectroscopy at an intense cold neutron beam facility

    No full text
    In the EXILL campaign a highly efficient array of high purity germanium (HPGe) detectors was operated at the cold neutron beam facility PF1B of the Institut Laue-Langevin (ILL) to carry out nuclear structure studies, via measurements of γ-rays following neutron-induced capture and fission reactions. The setup consisted of a collimation system producing a pencil beam with a thermal capture equivalent flux of about 108 n s−1cm−2 at the target position and negligible neutron halo. The target was surrounded by an array of eight to ten anti-Compton shielded EXOGAM Clover detectors, four to six anti-Compton shielded large coaxial GASP detectors and two standard Clover detectors. For a part of the campaign the array was combined with 16 LaBr3:(Ce) detectors from the FATIMA collaboration. The detectors were arranged in an array of rhombicuboctahedron geometry, providing the possibility to carry out very precise angular correlation and directional-polarization correlation measurements. The triggerless acquisition system allowed a signal collection rate of up to 6 × 105 Hz. The data allowed to set multi-fold coincidences to obtain decay schemes and in combination with the FATIMA array of LaBr3:(Ce) detectors to analyze half-lives of excited levels in the pico- to microsecond range. Precise energy and efficiency calibrations of EXILL were performed using standard calibration sources of 133Ba, 60Co and 152Eu as well as data from the reactions 27Al(n,γ)28Al and 35Cl(n,γ)36Cl in the energy range from 30 keV up to 10 MeV

    EXILL - a high-efficiency, high-resolution setup for gamma-spectroscopy at an intense cold neutron beam facility

    No full text
    In the EXILL campaign a highly efficient array of high purity germanium (HPGe) detectors was operated at the cold neutron beam facility PF1B of the Institut Laue-Langevin (ILL) to carry out nuclear structure studies, via measurements of gamma-rays following neutron-induced capture and fission reactions. The setup consisted of a collimation system producing a pencil beam with a thermal capture equivalent flux of about 10(8) ns(-1)cm(2) at the target position and negligible neutron halo. The targetwas surrounded by an array of eight to ten anti-Compton shielded EXOGAMClover detectors, four to six anti-Compton shielded large coaxial GASP detectors and two standard Clover detectors. For a part of the campaign the array was combined with 16 LaBr3:(Ce) detectors from the FATIMA collaboration. The detectorswere arranged in an array of rhombicuboctahedron geometry, providing the possibility to carry out very precise angular correlation and directional-polarization correlation measurements. The triggerless acquisition system allowed a signal collection rate of up to 6 x 10(5) Hz. The data allowed to set multi-fold coincidences to obtain decay schemes and in combination with the FATIMA array of LaBr3:(Ce) detectors to analyze half-lives of excited levels in the pico-to microsecond range. Precise energy and efficiency calibrations of EXILL were performed using standard calibration sources of Ba-133, Co-60 and Eu-152 as well as data from the reactions Al-27(n, gamma)Al-28 and Cl-35(n,gamma)Cl-36 in the energy range from 30 keV up to 10MeV
    corecore