2 research outputs found

    Characterizing archaeological bronze corrosion products intersecting electrochemical impedance measurements with voltammetry of immobilized particles

    Full text link
    [EN] Application of electrochemical impedance measurements to microparticulate deposits of copper corrosion products attached to graphite electrodes in contact with 0.10 M aqueous HClO4 electrolyte is described. The impedance measurements were sensitive to the applied potential and the amount of solid sample and were modeled taking into account the contribution of the uncovered base electrode. Several pairs of circuit elements provide monotonic variations which are able to characterize different corrosion compounds regardless the amount of microparticulate solid on the electrode. Application to a set of archaeological samples from the archaeological Roman site of Gadara (Jordan, 4th century AD) permitted to establish a grouping of such samples suggesting different provenances/manufacturing techniques.Financial support from the MINECO ProjectsCTQ2014-53736-C3-1-P and CTQ2014-53736-C3-2-P which are also supported with ERDF funds and Grants ES-2012-052716 and EEBB-I-16-11558 is gratefully acknowledgedRedondo-Marugan, J.; Piquero-Cilla, J.; Domenech Carbo, MT.; Ramírez-Barat, B.; Al Sekhaneh, W.; Capelo, S.; Doménech Carbó, A. (2017). Characterizing archaeological bronze corrosion products intersecting electrochemical impedance measurements with voltammetry of immobilized particles. Electrochimica Acta. 246:269-279. https://doi.org/10.1016/j.electacta.2017.05.190S26927924

    Electrochemical Characterization of Corrosion Products in Leaded Bronze Sculptures Considering Ohmic Drop Effects on Tafel Analysis

    Full text link
    [EN] The characterization of corrosion products in leaded bronze based on the voltammetry of immobilized particles methodology is described. Voltammetric data, supported by Fourier transform infra-red spectroscopy, field emission scanning electron microscopy-energy dispersive X-ray microanalysis (FESEM-EDX) and scanning electrochemical microscopy (SECM) allow the identification of copper and lead corrosion materials. The mutual influence of such products is modeled upon considering uncompensated ohmic drops in the Tafel analysis of the rising portion of the respective voltammetric signals for their electrochemical reduction.This work has been developed in cooperation with Rete dei Laboratori Universitari di Ingegneria Sismica – ReLUIS – for the research program founded by the Dipartimento della Protezione Civile (2014–2018)Domenech Carbo, A.; Domenech Carbo, MT.; Redondo-Marugán, J.; Osete Cortina, L.; Vivancos Ramón, MV. (2016). Electrochemical Characterization of Corrosion Products in Leaded Bronze Sculptures Considering Ohmic Drop Effects on Tafel Analysis. Electroanalysis. 28(4):833-845. https://doi.org/10.1002/elan.201500613S833845284D. A. Scott Copper and Bronze in Art: Corrosion, Colorants and Conservation, II Getty Publ. Los Angeles 2002.HUGHES, M. J., NORTHOVER, J. P., & STANIASZEK, B. E. P. (1982). PROBLEMS IN the ANALYSIS of LEADED BRONZE ALLOYS IN ANCIENT ARTEFACTS. Oxford Journal of Archaeology, 1(3), 359-364. doi:10.1111/j.1468-0092.1982.tb00320.xA History of MetallurgyTechnical Studies of Smithsonian Institution and Freer Gallery of ArtW. T. Chase Ancient, Historic MetalsMEEKS, N. D. (1986). TIN-RICH SURFACES ON BRONZE?SOME EXPERIMENTAL AND ARCHAEOLOGICAL CONSIDERATIONS. Archaeometry, 28(2), 133-162. doi:10.1111/j.1475-4754.1986.tb00383.xIngo, G. M., Plescia, P., Angelini, E., Riccucci, C., & de Caro, T. (2006). Bronze roman mirrors: the secret of brightness. Applied Physics A, 83(4), 611-615. doi:10.1007/s00339-006-3535-yDe Figueiredo Junior, J. C. D., de Freitas Cunha Lins, V., & De Bellis, V. M. (2007). Surface characterization of a corroded bronze-leaded alloy in a salt spray cabinet. Applied Surface Science, 253(17), 7104-7107. doi:10.1016/j.apsusc.2007.02.053Bosi, C., Garagnani, G. L., Imbeni, V., Martini, C., Mazzeo, R., & Poli, G. (2002). Journal of Materials Science, 37(20), 4285-4298. doi:10.1023/a:1020640216415C. S. Smith A search for structure MIT Press Ed Cambridge, 1981 85 88McCann, L. I., Trentelman, K., Possley, T., & Golding, B. (1999). Corrosion of ancient Chinese bronze money trees studied by Raman microscopy. Journal of Raman Spectroscopy, 30(2), 121-132. doi:10.1002/(sici)1097-4555(199902)30:23.0.co;2-lQuaranta, M., Catelli, E., Prati, S., Sciutto, G., & Mazzeo, R. (2014). Chinese archaeological artefacts: Microstructure and corrosion behaviour of high-leaded bronzes. Journal of Cultural Heritage, 15(3), 283-291. doi:10.1016/j.culher.2013.07.007Robbiola, L., Blengino, J.-M., & Fiaud, C. (1998). Morphology and mechanisms of formation of natural patinas on archaeological Cu–Sn alloys. Corrosion Science, 40(12), 2083-2111. doi:10.1016/s0010-938x(98)00096-1F. Scholz B. Meyer Electroanalytical Chemistry, A Series of Advances vol. 20 1 (1998).F. Scholz U. Schröder R. Gulaboski A. Doménech-Carbó Electrochemistry of Immobilized Particles and Droplets 2nd Edit. Springer Berlin-Heidelberg, 2014.Doménech-Carbó, A., Labuda, J., & Scholz, F. (2012). Electroanalytical chemistry for the analysis of solids: Characterization and classification (IUPAC Technical Report). Pure and Applied Chemistry, 85(3), 609-631. doi:10.1351/pac-rep-11-11-13A. Doménech-Carbó M. T. Doménech-Carbó V. Costa Electrochemical Methods in Archaeometry, Conservation and Restoration Springer Berlin-Heidelberg 2009.Doménech-Carbó, A. (2009). Voltammetric methods applied to identification, speciation, and quantification of analytes from works of art: an overview. Journal of Solid State Electrochemistry, 14(3), 363-379. doi:10.1007/s10008-009-0858-6Costa, V., Leyssens, K., Adriaens, A., Richard, N., & Scholz, F. (2009). Electrochemistry reveals archaeological materials. Journal of Solid State Electrochemistry, 14(3), 449-451. doi:10.1007/s10008-009-0864-8Souissi, N., Bousselmi, L., Khosrof, S., & Triki, E. (2004). Voltammetric behaviour of an archeaological bronze alloy in aqueous chloride media. Materials and Corrosion, 55(4), 284-292. doi:10.1002/maco.200303719Serghini-Idrissi, M., Bernard, M. C., Harrif, F. Z., Joiret, S., Rahmouni, K., Srhiri, A., … Ziani, M. (2005). Electrochemical and spectroscopic characterizations of patinas formed on an archaeological bronze coin. Electrochimica Acta, 50(24), 4699-4709. doi:10.1016/j.electacta.2005.01.050Doménech-Carbó, A., Doménech-Carbó, M., & Martínez-Lázaro, I. (2007). Electrochemical identification of bronze corrosion products in archaeological artefacts. A case study. Microchimica Acta, 162(3-4), 351-359. doi:10.1007/s00604-007-0839-3Šatović, D., Martinez, S., & Bobrowski, A. (2010). Electrochemical identification of corrosion products on historical and archaeological bronzes using the voltammetry of micro-particles attached to a carbon paste electrode. Talanta, 81(4-5), 1760-1765. doi:10.1016/j.talanta.2010.03.037Arjmand, F., & Adriaens, A. (2011). Electrochemical quantification of copper-based alloys using voltammetry of microparticles: optimization of the experimental conditions. Journal of Solid State Electrochemistry, 16(2), 535-543. doi:10.1007/s10008-011-1365-0Blum, D., Leyffer, W., & Holze, R. (1996). Pencil-Leads as new electrodes for abrasive stripping voltammetry. Electroanalysis, 8(3), 296-297. doi:10.1002/elan.1140080317Doménech-Carbó, A., Doménech-Carbó, M. T., & Peiró-Ronda, Mªa. (2011). ‘One-Touch’ Voltammetry of Microparticles for the Identification of Corrosion Products in Archaeological Lead. Electroanalysis, 23(6), 1391-1400. doi:10.1002/elan.201000739Doménech, A., Doménech-Carbó, M. T., Pasies, T., & Bouzas, M. C. (2011). Application of Modified Tafel Analysis to the Identification of Corrosion Products on Archaeological Metals Using Voltammetry of Microparticles. Electroanalysis, 23(12), 2803-2812. doi:10.1002/elan.201100577P. Letardi A. Beccaria M. Marabelli G. D’Ercoli Development of Electrochemical Impedance Spectroscopy as a Tool for Outdoors Bronze Corrosion Characterization 2 nd International Congress on Science and Technology for the Safeguard of Cultural Heritage in the Mediterranean Basin, Paris Elsevier Amsterdam, 2000 407 411Rodríguez-Acuña, F., Genescá, J., & Uruchurtu, J. (2009). Electrochemical evaluation of patinas formed on nineteenth century bronze bells. Journal of Applied Electrochemistry, 40(2), 311-320. doi:10.1007/s10800-009-9977-0Rublinetskaya, Y. V., Il’inykh, E. O., & Slepushkin, V. V. (2011). A standardless method for the local electrochemical analysis of homogeneous alloys. Journal of Analytical Chemistry, 66(1), 84-87. doi:10.1134/s1061934810111024Doménech, A., Doménech-Carbó, M. T., & Martínez-Lázaro, I. (2010). Layer-by-layer identification of copper alteration products in metallic works of art using the voltammetry of microparticles. Analytica Chimica Acta, 680(1-2), 1-9. doi:10.1016/j.aca.2010.09.002DOMÉNECH-CARBÓ, A., DOMÉNECH-CARBÓ, M. T., PEIRÓ-RONDA, M. A., & OSETE-CORTINA, L. (2011). ELECTROCHEMISTRY AND AUTHENTICATION OF ARCHAEOLOGICAL LEAD USING VOLTAMMETRY OF MICROPARTICLES: APPLICATION TO THE TOSSAL DE SANT MIQUEL IBERIAN PLATE. Archaeometry, 53(6), 1193-1211. doi:10.1111/j.1475-4754.2011.00608.xDoménech, A. (2011). Tracing, authenticating and dating archaeological metal using the voltammetry of microparticles. Analytical Methods, 3(10), 2181. doi:10.1039/c1ay05416cDoménech-Carbó, A., Doménech-Carbó, M. T., & Peiró-Ronda, M. A. (2011). Dating Archeological Lead Artifacts from Measurement of the Corrosion Content Using the Voltammetry of Microparticles. Analytical Chemistry, 83(14), 5639-5644. doi:10.1021/ac200731qDoménech-Carbó, A., Doménech-Carbó, M. T., Peiró-Ronda, M. A., Martínez-Lázaro, I., & Barrio-Martín, J. (2012). Application of the voltammetry of microparticles for dating archaeological lead using polarization curves and electrochemical impedance spectroscopy. Journal of Solid State Electrochemistry, 16(7), 2349-2356. doi:10.1007/s10008-012-1668-9Doménech-Carbó, A., Doménech-Carbó, M. T., Capelo, S., Pasíes, T., & Martínez-Lázaro, I. (2014). Dating Archaeological Copper/Bronze Artifacts by Using the Voltammetry of Microparticles. Angewandte Chemie International Edition, 53(35), 9262-9266. doi:10.1002/anie.201404522Engstrom, R. C., Weber, M., Wunder, D. J., Burgess, R., & Winquist, S. (1986). Measurements within the diffusion layer using a microelectrode probe. Analytical Chemistry, 58(4), 844-848. doi:10.1021/ac00295a044A. J. Bard M. V. Mirkin Scanning Electrochemical Microscopy Taylor & Francis Boca Raton, 2003.Guadagnini, L., Chiavari, C., Martini, C., Bernardi, E., Morselli, L., & Tonelli, D. (2011). The use of scanning electrochemical microscopy for the characterisation of patinas on copper alloys. Electrochimica Acta, 56(19), 6598-6606. doi:10.1016/j.electacta.2011.04.080Doménech-Carbó, A., Doménech-Carbó, M. T., Silva, M., Valle-Algarra, F. M., Gimeno-Adelantado, J. V., Bosch-Reig, F., & Mateo-Castro, R. (2015). Screening and mapping of pigments in paintings using scanning electrochemical microscopy (SECM). The Analyst, 140(4), 1065-1075. doi:10.1039/c4an01911cSmith, G. D., & Clark, R. J. H. (2002). Note on Lead(II) Oxide in Mediaeval Frescoes from the Monastery of San Baudelio, Spain. Applied Spectroscopy, 56(6), 804-806. doi:10.1366/000370202760077577Goltz, D., McClelland, J., Schellenberg, A., Attas, M., Cloutis, E., & Collins, C. (2003). Spectroscopic Studies on the Darkening of Lead White. Applied Spectroscopy, 57(11), 1393-1398. doi:10.1366/000370203322554563Martens, W. N., Rintoul, L., Kloprogge, J. T., & Frost, R. L. (2004). Single crystal raman spectroscopy of cerussite. American Mineralogist, 89(2-3), 352-358. doi:10.2138/am-2004-2-314Bouchard, M., & Smith, D. C. (2003). Catalogue of 45 reference Raman spectra of minerals concerning research in art history or archaeology, especially on corroded metals and coloured glass. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 59(10), 2247-2266. doi:10.1016/s1386-1425(03)00069-6Frost, R. L. (2003). Raman spectroscopy of selected copper minerals of significance in corrosion. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 59(6), 1195-1204. doi:10.1016/s1386-1425(02)00315-3Hasse, U., & Scholz, F. (2001). In situ atomic force microscopy of the reduction of lead oxide nanocrystals immobilised on an electrode surface. Electrochemistry Communications, 3(8), 429-434. doi:10.1016/s1388-2481(01)00194-1Hasse, U., Nießen, J., & Scholz, F. (2003). Atomic force microscopy of the electrochemical reductive dissolution of sub-micrometer sized crystals of goethite immobilized on gold electrodes. Journal of Electroanalytical Chemistry, 556, 13-22. doi:10.1016/s0022-0728(03)00316-4Hasse, U., Wagner, K., & Scholz, F. (2004). Nucleation at three-phase junction lines: in situ atomic force microscopy of the electrochemical reduction of sub-micrometer size silver and mercury(I) halide crystals immobilized on solid electrodes. Journal of Solid State Electrochemistry, 8(10). doi:10.1007/s10008-004-0552-7Doménech-Carbó, A., Doménech-Carbó, M. T., López-López, F., Valle-Algarra, F. M., Osete-Cortina, L., & Haartman, E. A.-V. (2013). Electrochemical Characterization of Egyptian Blue Pigment in Wall Paintings Using the Voltammetry of Microparticles Methodology. Electroanalysis, 25(12), 2621-2630. doi:10.1002/elan.201300417Nicholson, R. S. (1965). Some Examples of the Numerical Solution of Nonlinear Integral Equations. Analytical Chemistry, 37(6), 667-671. doi:10.1021/ac60225a009Fan, F. R. F., Mirkin, M. V., & Bard, A. J. (1994). Polymer Films on Electrodes. 25. Effect of Polymer Resistance on the Electrochemistry of Poly(vinylferrocene): Scanning Electrochemical Microscopic, Chronoamperometric, and Cyclic Voltammetric Studies. The Journal of Physical Chemistry, 98(5), 1475-1481. doi:10.1021/j100056a018Trijueque, J., Garcı́a-Jareño, J. J., Navarro-Laboulais, J., Sanmatı́as, A., & Vicente, F. (1999). Ohmic drop of Prussian-blue/graphite+epoxy electrodes. Electrochimica Acta, 45(4-5), 789-795. doi:10.1016/s0013-4686(99)00257-1Mirčeski, V., & Lovrić, M. (2001). Ohmic drop effects in square-wave voltammetry. Journal of Electroanalytical Chemistry, 497(1-2), 114-124. doi:10.1016/s0022-0728(00)00464-2Krulic, D., & Fatouros, N. (2011). Peak heights and peak widths at half-height in square wave voltammetry without and with ohmic potential drop for reversible and irreversible systems. Journal of Electroanalytical Chemistry, 652(1-2), 26-31. doi:10.1016/j.jelechem.2010.12.00
    corecore