17 research outputs found

    RNA sequencing to predict response to TNF-\u3b1 inhibitors reveals possible mechanism for nonresponse in smokers

    Get PDF
    Several studies have employed microarray-based profiling to predict response to tumor necrosis factor-alpha inhibitors (TNFi) in rheumatoid arthritis (RA); yet efforts to validate these targets have failed to show predictive abilities acceptable for clinical practice

    Nature and frequency of respiratory involvement in chronic progressive external ophthalmoplegia

    Get PDF
    Chronic progressive external ophthalmoplegia (CPEO) is a relatively common mitochondrial disorder. Weakness of the extra-ocular, limb girdle and laryngeal muscles are established clinical features. Respiratory muscle involvement however has never been studied systematically, even though respiratory complications are one of the main causes of death. We therefore determined the prevalence and nature of respiratory muscle involvement in 23 patients with genetically confirmed CPEO. The main finding was decreased respiratory muscle strength, both expiratory (76.8% of predicted, p = 0.002) and inspiratory (79.5% of predicted, p = 0.004). Although the inspiratory vital capacity (92.5% of predicted, p = 0.021) and the forced expiratory volume in 1 s (89.3% of predicted, p = 0.002) were below predicted values, both were still within the normal range in the majority of patients. Expiratory weakness was associated with a decreased vital capacity (ρ = 0.502, p = 0.015) and decreased peak expiratory flow (ρ = 0.422, p = 0.045). Moreover, expiratory muscle strength was lower in patients with limb girdle weakness (62.6 ± 26.1% of predicted vs. 98.9 ± 22.5% in patients with normal limb girdle strength, p = 0.003), but was not associated with other clinical features, subjective respiratory complaints, disease severity or disease duration. Since respiratory involvement in CPEO is associated with severe morbidity and mortality, the present data justify periodic assessment of respiratory functions in all CPEO patients

    A Mutation in Myo15 Leads to Usher-Like Symptoms in LEW/Ztm-ci2 Rats

    Get PDF
    The LEW/Ztm-ci2 rat is an animal model for syndromal deafness that arose from a spontaneous mutation. Homozygous animals show locomotor abnormalities like lateralized circling behavior. Additionally, an impaired vision can be observed in some animals through behavioral studies. Syndromal deafness as well as retinal degeneration are features of the Usher syndrome in humans. In the present study, the mutation was identified as a base substitution (T->C) in exon 56 of Myo15, leading to an amino acid exchange from leucine (Leu) to proline (Pro) within the carboxy-terminal MyTH4 domain in the proteins' tail region. Myo15 mRNA was expressed in the retina as demonstrated for the first time with the help of in-situ hybridization and PCR. To characterize the visual phenotype, rats were examined by scotopic and photopic electroretinography and, additionally, histological analyses of the retinas were conducted. The complete loss of sight was detected along with a severe degeneration of photoreceptor cells. Interestingly, the manifestation of the disease does not solely depend on the mutation, but also on environmental factors. Since the LEW/Ztm-ci2 rat features the entire range of symptoms of the human Usher syndrome we think that this strain is an appropriate model for this disease. Our findings display that mutations in binding domains of myosin XV do not only cause non-syndromic hearing loss but can also lead to syndromic disorders including retinal dysfunction

    Can baseline serum microRNAs predict response to TNF-alpha inhibitors in rheumatoid arthritis?

    Get PDF
    Background: In rheumatoid arthritis, prediction of response to TNF-alpha inhibitor (TNFi) treatment would be of clinical value. This study aims to discover miRNAs that predict response and aims to replicate results of two previous studies addressing this topic. Methods: From the observational BiOCURA cohort, 40 adalimumab- (ADA) and 40 etanercept- (ETN) treated patients were selected to enter the discovery cohort and baseline serum profiling on 758 miRNAs was performed. The added value of univariately selected miRNAs (p <0.05) over clinical parameters in prediction of response was determined by means of the area under the receiver operating characteristic curve (AUC-ROC). Validation was performed by TaqMan single qPCR assays in 40 new patients. Results: Expression of miR-99a and miR-143 predicted response to ADA, and miR-23a and miR-197 predicted response to ETN. The addition of miRNAs increased the AUC-ROC of a model containing only clinical parameters for ADA (0.75 to 0.97) and ETN (0.68 to 0.78). In validation, none of the selected miRNAs significantly predicted response. miR-23a was the only overlapping miRNA compared to the two previous studies, however inversely related with response in one of these studies. The reasons for the inability to replicate previously proposed miRNAs predicting response to TNFi and replicate those from the discovery cohort were investigated and discussed. Conclusions: To date, no miRNA consistently predicting response to TNFi therapy in RA has been identified. Future studies on this topic should meet a minimum of standards in design that are addressed in this study, in order to increase the reproducibility

    Polymorphisms in the multidrug-resistance 1 gene related to glucocorticoid response in rheumatoid arthritis treatment

    No full text
    A substantial proportion of rheumatoid arthritis (RA)-patients experience an insufficient response to glucocorticoids, an important therapeutic agent in RA. The multidrug-resistance 1 (MDR1) gene product P-glycoprotein (P-gp) is an efflux pump that actively transports substrates, such as glucocorticoids, out of the cell. We investigated if the variation in response might be explained by single-nucleotide polymorphisms (SNPs) in the MDR1 gene. RA-patients treated with intravenous methylprednisolone pulses (n = 18) or oral prednisone/prednisolone (n = 22) were included in a prospective cohort, and clinical response was measured after 5 and 30 days, respectively. The C1236T, G2677A/T, and C3435T SNPs were determined, and the functionality of P-gp was assessed by flow cytometry (Rhodamine efflux assay). Carriage of the G2677A/T SNP was significantly associated with response (OR = 6.18, p = 0.035), the other SNPs showed trends. Stratified for received treatment, the effect was only present in methylprednisolone treated patients. Mutant allele carriage significantly decreased functionality of P-gp in B cells, though had a smaller impact in other PBMC subtypes. Carriage of a MDR1 SNP was related to a response to methylprednisolone in this study, which his suggests that RA-patients carrying wild-type alleles might benefit from P-gp inhibition or administration of glucocorticoid analogues that are non-P-gp substrates

    Metabolomics profiling of the free and total oxidised lipids in urine by LC-MS/MS: application in patients with rheumatoid arthritis

    Get PDF
    Oxidised lipids, covering enzymatic and auto-oxidation-synthesised mediators, are important signalling metabolites in inflammation while also providing a readout for oxidative stress, both of which are prominent physiological processes in a plethora of diseases. Excretion of these metabolites via urine is enhanced through the phase-II conjugation with glucuronic acid, resulting in increased hydrophilicity of these lipid mediators. Here, we developed a bovine liver-ÎČ-glucuronidase hydrolysing sample preparation method, using liquid chromatography coupled to tandem mass spectrometry to analyse the total urinary oxidised lipid profile including the prostaglandins, isoprostanes, dihydroxy-fatty acids, hydroxy-fatty acids and the nitro-fatty acids. Our method detected more than 70 oxidised lipids biosynthesised from two non-enzymatic and three enzymatic pathways in urine samples. The total oxidised lipid profiling method was developed and validated for human urine and was demonstrated for urine samples from patients with rheumatoid arthritis. Pro-inflammatory mediators PGF2α and PGF3α and oxidative stress markers iPF2α- IV, 11-HETE and 14-HDoHE were positively associated with improvement of disease activity score. Furthermore, the anti-inflammatory nitro-fatty acids were negatively associated with baseline disease activity. In conclusion, the developed methodology expands the current metabolic profiling of oxidised lipids in urine, and its application will enhance our understanding of the role these bioactive metabolites play in health and disease

    Differences between serum polar lipid profiles of male and female rheumatoid arthritis patients in response to glucocorticoid treatment

    Get PDF
    Objective: As there are pharmacological differences between males and females, and glucocorticoid (GC) treatment is associated with increased cardiovascular mortality rate in rheumatoid arthritis (RA) patients, it is important to study serum polar lipid profiles of male and female patients in response to GC therapy. Gender differences may require an adjustment to the treatment strategy for a selection of patients. Methods: Serum samples from 281 RA patients were analysed using a targeted lipidomics platform. The differences in GC use and gender on polar lipid profiles were cross sectionally examined by multiple linear regressions, while correcting for confounding factors. Results: Differences in polar lipids between GC users and non-GC users in females and males were merely restricted to lysophospholipids (lysophosphatidylcholines and lysophosphatidylethanolamines). Lysophospholipids in female patients treated with GCs were significantly higher than female patients not treated with GCs (p = 6.0 E−6), whereas no significant difference was observed in male GC users versus non-users (p = 0.397). Conclusion: The lysophospholipid profiles in response to GCs were significantly different between male and female RA patients, which may have implications for the cardiovascular risk of GC treatment

    Exploring the Inflammatory Metabolomic Profile to Predict Response to TNF-α Inhibitors in Rheumatoid Arthritis

    No full text
    <div><p>In clinical practice, approximately one-third of patients with rheumatoid arthritis (RA) respond insufficiently to TNF-α inhibitors (TNFis). The aim of the study was to explore the use of a metabolomics to identify predictors for the outcome of TNFi therapy, and study the metabolomic fingerprint in active RA irrespective of patients’ response. In the metabolomic profiling, lipids, oxylipins, and amines were measured in serum samples of RA patients from the observational BiOCURA cohort, before start of biological treatment. Multivariable logistic regression models were established to identify predictors for good- and non-response in patients receiving TNFi (n = 124). The added value of metabolites over prediction using clinical parameters only was determined by comparing the area under receiver operating characteristic curve (AUC-ROC), sensitivity, specificity, positive- and negative predictive value and by the net reclassification index (NRI). The models were further validated by 10-fold cross validation and tested on the complete TNFi treatment cohort including moderate responders. Additionally, metabolites were identified that cross-sectionally associated with the RA disease activity score based on a 28-joint count (DAS28), erythrocyte sedimentation rate (ESR) or C-reactive protein (CRP). Out of 139 metabolites, the best-performing predictors were <i>sn1</i>-LPC(18:3-ω3/ω6), <i>sn1</i>-LPC(15:0), ethanolamine, and lysine. The model that combined the selected metabolites with clinical parameters showed a significant larger AUC-ROC than that of the model containing only clinical parameters (p = 0.01). The combined model was able to discriminate good- and non-responders with good accuracy and to reclassify non-responders with an improvement of 30% (total NRI = 0.23) and showed a prediction error of 0.27. For the complete TNFi cohort, the NRI was 0.22. In addition, 88 metabolites were associated with DAS28, ESR or CRP (p<0.05). Our study established an accurate prediction model for response to TNFi therapy, containing metabolites and clinical parameters. Associations between metabolites and disease activity may help elucidate additional pathologic mechanisms behind RA.</p></div

    Flowchart of statistical analyses.

    No full text
    <p>(A) Prediction of response to TNFi: All steps to build a prediction model on TNFi response were performed on the TNFi subset with EULAR good-response or non-response (n = 124). (B) Sensitivity analysis on the complete cohort of TNFi initiating patients. (C) Metabolites associated with disease activity. Analyses to investigate metabolites association with CRP, ESR or DAS28 were performed on the total cohort of patients using bDMARDs (n = 231; including TNFi and non-TNFi treated patients). Blue boxes/circles indicate (selection of) respectively metabolites or clinical parameters, whereas orange boxes indicate the performed analyses. bDMARDs: biological disease-modifying anti-rheumatic drugs; CRP: C-reactive protein; DAS28: disease activity score based on a 28-joint count; ESR: erythrocyte sedimentation rate; GEE: generalized estimating equation, LC-MS: liquid chromatography coupled to mass spectrometry; ROC: receiver operating characteristic; TNFi: TNF-α inhibitor.</p
    corecore