268 research outputs found
Comparative genomics of Australian isolates of the wheat stem rust pathogen Puccinia graminis f. sp. tritici reveals extensive polymorphism in candidate effector genes
The wheat stem rust fungus Puccinia graminis f. sp. tritici (Pgt) is one of the most destructive pathogens of wheat. In this study, a draft genome was built for a founder Australian Pgt isolate of pathotype (pt.) 21-0 (collected in 1954) by next generation DNA sequencing. A combination of reference-based assembly using the genome of the previously sequenced American Pgt isolate CDL 75-36-700-3 (p7a) and de novo assembly were performed resulting in a 92 Mbp reference genome for Pgt isolate 21-0. Approximately 13 Mbp of de novo assembled sequence in this genome is not present in the p7a reference assembly. This novel sequence is not specific to 21-0 as it is also present in three other Pgt rust isolates of independent origin. The new reference genome was subsequently used to build a pan-genome based on five Australian Pgt isolates. Transcriptomes from germinated urediniospores and haustoria were separately assembled for pt. 21-0 and comparison of gene expression profiles showed differential expression in ∼10% of the genes each in germinated spores and haustoria. A total of 1,924 secreted proteins were predicted from the 21-0 transcriptome, of which 520 were classified as haustorial secreted proteins (HSPs). Comparison of 21-0 with two presumed clonal field derivatives of this lineage (collected in 1982 and 1984) that had evolved virulence on four additional resistance genes (Sr5, Sr11, Sr27, SrSatu) identified mutations in 25 HSP effector candidates. Some of these mutations could explain their novel virulence phenotypes.Authors wish to thank the Two Blades Foundation for financial support. Part of this work was supported through access to facilities managed by Bioplatforms Australia and funded by the Australian Government National Collaborative Research Infrastructure Strategy and Education Investment Fund Super Science Initiative
Global analysis of mutations driving microevolution of a heterozygous diploid fungal pathogen
Data deposition: The sequence reported in this paper has been deposited in the NCBI Sequence Read Archive, https://www.ncbi.nlm.nih.gov/bioproject (BioProject ID PRJNA345600). This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1806002115/-/DCSupplemental.Peer reviewedPublisher PD
Microevolutionary traits and comparative population genomics of the emerging pathogenic fungus Cryptococcus gattii
Emerging fungal pathogens cause an expanding burden of disease across the animal kingdom, including a rise in morbidity and mortality in humans. Yet, we currently have only a limited repertoire of available therapeutic interventions. A greater understanding of the mechanisms of fungal virulence and of the emergence of hypervirulence within species is therefore needed for new treatments and mitigation efforts. For example, over the past decade, an unusual lineage of Cryptococcus gattii, which was first detected on Vancouver Island, has spread to the Canadian mainland and the Pacific Northwest infecting otherwise healthy individuals. The molecular changes that led to the development of this hypervirulent cryptococcal lineage remain unclear. To explore this, we traced the history of similar microevolutionary events that can lead to changes in host range and pathogenicity. Here, we detail fine-resolution mapping of genetic differences between two highly related Cryptococcus gattii VGIIc isolates that differ in their virulence traits (phagocytosis, vomocytosis, macrophage death, mitochondrial tubularization and intracellular proliferation). We identified a small number of single site variants within coding regions that potentially contribute to variations in virulence. We then extended our methods across multiple lineages of C. gattii to study how selection is acting on key virulence genes within different lineages.
This article is part of the themed issue ‘Tackling emerging fungal threats to animal health, food security and ecosystem resilience’
Transcriptional Heterogeneity of Cryptococcus gattii VGII Compared with Non-VGII Lineages Underpins Key Pathogenicity Pathways
We thank Jose Munoz for his input on the analysis of the mouse RNA-seq enrichment. R.A.F. was supported by a Wellcome Trust-Massachusetts Institute of Technology (MIT) Postdoctoral Fellowship. M.C.F. and J.R. were supported by Medical Research Council grant MR/K000373/1. R.C.M. is supported by a Wolfson Royal Society Research Merit Award and by funding from the European Research Council under the European Union’s Seventh Framework Program (FP/2007-2013)/ERC (grant agreement no. 614562). This work was funded in part by NIAID grant U19AI110818 to the Broad Institute.Peer reviewedPublisher PD
Genomic innovations linked to infection strategies across emerging pathogenic chytrid fungi
We acknowledge the Broad Institute Sequencing Platform and Imperial College London for generating the DNA and RNA sequence described here. Financial support was provided by a UK Natural Environmental Research Council (NERC NE/K012509/1) grant to MCF, a Wellcome Trust Fellowship to RF, a Morris Animal Foundation grant to FP, and by the National Human Genome Research Institute grant number U54HG003067 to the Broad Institute. E.V. is supported by the Research Foundation Flanders (FWO grant 12E6616N).Peer reviewedPublisher PD
Recommended from our members
Future-Proofing Your Microbiology Resource Announcements Genome Assembly for Reproducibility and Clarity.
Descriptions of resources, like the genome assemblies reported in Microbiology Resource Announcements, are often frozen at their time of publication, yet they will need to be interpreted in the midst of continually evolving technologies. It is therefore important to ensure that researchers accessing published resources have access to all of the information required to repeat, interpret, and extend these original analyses. Here, we provide a set of suggestions to help make certain that published resources remain useful and repeatable for the foreseeable future
Hsf1 and Hsp90 orchestrate temperature-dependent global transcriptional remodelling and chromatin architecture in Candida albicans
We thank Karim Gharbi and Urmi Trivedi for their assistance with RNA sequencing, carried out in the GenePool genomics facility (University of Edinburgh). We also thank Susan Fairley and Eduardo De Paiva Alves (Centre for Genome Enabled Biology and Medicine, University of Aberdeen) for help with the initial bioinformatics analysis. We thank Aaron Mitchell for kindly providing the ALS3 mutant, Julian Naglik for the gift of TR146 cells, and Jon Richardson for technical assistance. We thank the Genomics and Bioinformatics core of the Faculty of Health Sciences for Next Generation Sequencing and Bioinformatics support, the Information and Communication Technology Office at the University of Macau for providing access to a High Performance Computer and Jacky Chan and William Pang for their expert support on the High Performance Computer. Finally, we thank Amanda Veri for generating CaLC2928. M.D.L. is supported by a Sir Henry Wellcome Postdoctoral Fellowship (Wellcome Trust 096072), R.A.F. by a Wellcome Trust-Massachusetts Institute of Technology (MIT) Postdoctoral Fellowship, L.E.C. by a Canada Research Chair in Microbial Genomics and Infectious Disease and by Canadian Institutes of Health Research Grants MOP-119520 and MOP-86452, A.J. P.B. was supported by the UK Biotechnology and Biological Sciences Research Council (BB/F00513X/1) and by the European Research Council (ERC-2009-AdG-249793-STRIFE), KHW is supported by the Science and Technology Development Fund of Macau S.A.R (FDCT) (085/2014/A2) and the Research and Development Administrative Office of the University of Macau (SRG2014-00003-FHS) and R.T.W. by the Burroughs Wellcome fund and NIH R15AO094406. Data availability RNA-sequencing data sets are available at ArrayExpress (www.ebi.ac.uk) under accession code E-MTAB-4075. ChIP-seq data sets are available at the NCBI SRA database (http://www.ncbi.nlm.nih.gov) under accession code SRP071687. The authors declare that all other data supporting the findings of this study are available within the article and its supplementary information files, or from the corresponding author upon request.Peer reviewedPublisher PD
Genome Evolution and Innovation across the Four Major Lineages of Cryptococcus gattii
We acknowledge the Broad Institute Sequencing Platform and Imperial College London for generating the DNA sequence described here (and R265 Illumina sequences described previously [4]). We thank Sinéad Chapman for coordinating sequencing at the Broad Institute and Margaret Priest for assistance in submitting assemblies to NCBI. This project was supported by the National Human Genome Research Institute, grant no. U54HG003067. R.A.F. is supported by the Wellcome Trust. R.C.M. is supported by the Lister Institute for Preventive Medicine, the Medical Research Council UK, and the European Research Council.Peer reviewedPublisher PD
Pathways of pathogenicity:transcriptional stages of germination in the fatal fungal pathogen
ABSTRACT Rhizopus delemar is an invasive fungal pathogen responsible for the frequently fatal disease mucormycosis. Germination, a crucial mechanism by which infectious spores of Rhizopus delemar cause disease, is a key developmental process that transforms the dormant spore state into a vegetative one. The molecular mechanisms that underpin this transformation may be key to controlling mucormycosis; however, the regulation of germination remains poorly understood. This study describes the phenotypic and transcriptional changes that take place over the course of germination. This process is characterized by four distinct stages: dormancy, isotropic swelling, germ tube emergence, and hyphal growth. Dormant spores are shown to be transcriptionally unique, expressing a subset of transcripts absent in later developmental stages. A large shift in the expression profile is prompted by the initiation of germination, with genes involved in respiration, chitin, cytoskeleton, and actin regulation appearing to be important for this transition. A period of transcriptional consistency can be seen throughout isotropic swelling, before the transcriptional landscape shifts again at the onset of hyphal growth. This study provides a greater understanding of the regulation of germination and highlights processes involved in transforming Rhizopus delemar from a single-cellular to multicellular organism. IMPORTANCE Germination is key to the growth of many organisms, including fungal spores. Mucormycete spores exist abundantly within the environment and germinate to form hyphae. These spores are capable of infecting immunocompromised individuals, causing the disease mucormycosis. Germination from spore to hyphae within patients leads to angioinvasion, tissue necrosis, and often fatal infections. This study advances our understanding of how spore germination occurs in the mucormycetes, identifying processes we may be able to inhibit to help prevent or treat mucormycosis
Cleavage at a V(D)J recombination signal requires only RAG1 and RAG2 proteins and occurs in two steps
Formation of double-strand breaks at recombination signal sequences is an
early step in V(D)J recombination. Here we show that purified RAG1 and
RAG2 proteins are sufficient to carry out this reaction. The cleavage
reaction can be divided into two distinct steps. First, a nick is
introduced at the 5' end of the signal sequence. The other strand is then
broken, resulting in a hairpin structure at the coding end and a blunt,
5'-phosphorylated signal end. The hairpin is made as a direct consequence
of the cleavage mechanism. Nicking and hairpin formation each require the
presence of a signal sequence and both RAG proteins
- …