20 research outputs found

    Analisi di settore: il software

    Get PDF
    Indice: Definizione del business - Quadro macroeconomico - Analisi della domanda - Analisi del sistema competitivo

    Data-Driven Approaches to Predict States in a Food Technology Case Study

    No full text
    In Food Science and Technology applications complex phenomena that involve macroscopic measurements are generally challenging to be represented in a formal (mathematical) way. In this paper we propose to model the evolution of some morphology descriptors of bread making process by adopting a well-known methodology: the Particle Filtering. The main idea is to describe the volume variations, related to the yeast content in a bread dough, with a stochastic differential model to forecast the dynamics of leavening and baking bread processes, when some samples are known in several time instants. Numerical experiments confirm that the proposed approach is able to accurately predict values of leavening and baking function. Finally, we highlight that for Food Science and Technology applications an interesting feature of the proposed scheme is its ability to forecast variable states also when few instant samples are available

    Biochemical and functional characterization of protein kinase CK2 in ascidian Ciona intestinalis oocytes at fertilization. Cloning and sequence analysis of cDNA for alpha and beta subunits.

    No full text
    The ubiquitous and pleiotropic dual specificity protein kinase CK2 has been studied and characterized in many organisms, from yeast to mammals. Generally, the enzyme is composed of two catalytic (α and/or α′) and two regulatory (β) subunits, forming a differently assembled tetramer. Although prone to controversial interpretation, the function of CK2 has been associated with fundamental biological processes such as signal transduction, cell cycle progression, cell growth, apoptosis, and transcription. Less known is the role of CK2 during meiosis and the early phase of embryogenesis. In this work, we studied CK2 activity during oocyte activation, a process occurring at the end of oocyte maturation and triggered by fertilization. In ascidian Ciona intestinalis, an organism whose complete genome has been published recently, CK2 was constitutively active in unfertilized and fertilized oocytes. The enzymatic activity oscillated through meiosis showing three major peaks: soon after fertilization (metaphase I exit), before metaphase II, and at the exit from metaphase II. Biochemical analysis of CK2 subunit composition in activated oocytes indicated that CK2-α was catalytically active as a monomer, independently from its regulatory subunit β; however, CK2-β was only detectable in unfertilized oocytes where it was associated with a bona fide identified ascidian mitogen-activated protein kinase. After fertilization, CK2-β was undetectable, suggesting its rapid degradation. Protein sequence analysis of CK2-α and -β cDNA indicated a high identity compared with vertebrate homologs. In addition, the absence of putative phosphorylation sites for Cdc2 kinase on both α and β subunits suggested an important role for CK2 in regulating meiotic cell cycle in C. intestinalis oocytes

    The hypoxia sensitive metal transcription factor MTF-1 activates NCX1 brain promoter and participates in remote postconditioning neuroprotection in stroke

    No full text
    Abstract Remote limb ischemic postconditioning (RLIP) is an experimental strategy in which short femoral artery ischemia reduces brain damage induced by a previous harmful ischemic insult. Ionic homeostasis maintenance in the CNS seems to play a relevant role in mediating RLIP neuroprotection and among the effectors, the sodium-calcium exchanger 1 (NCX1) may give an important contribution, being expressed in all CNS cells involved in brain ischemic pathophysiology. The aim of this work was to investigate whether the metal responsive transcription factor 1 (MTF-1), an important hypoxia sensitive transcription factor, may (i) interact and regulate NCX1, and (ii) play a role in the neuroprotective effect mediated by RLIP through NCX1 activation. Here we demonstrated that in brain ischemia induced by transient middle cerebral occlusion (tMCAO), MTF-1 is triggered by a subsequent temporary femoral artery occlusion (FAO) and represents a mediator of endogenous neuroprotection. More importantly, we showed that MTF-1 translocates to the nucleus where it binds the metal responsive element (MRE) located at −23/−17 bp of Ncx1 brain promoter thus activating its transcription and inducing an upregulation of NCX1 that has been demonstrated to be neuroprotective. Furthermore, RLIP restored MTF-1 and NCX1 protein levels in the ischemic rat brain cortex and the silencing of MTF-1 prevented the increase of NCX1 observed in RLIP protected rats, thus demonstrating a direct regulation of NCX1 by MTF-1 in the ischemic cortex of rat exposed to tMCAO followed by FAO. Moreover, silencing of MTF-1 significantly reduced the neuroprotective effect elicited by RLIP as demonstrated by the enlargement of brain infarct volume observed in rats subjected to RLIP and treated with MTF-1 silencing. Overall, MTF-dependent activation of NCX1 and their upregulation elicited by RLIP, besides unraveling a new molecular pathway of neuroprotection during brain ischemia, might represent an additional mechanism to intervene in stroke pathophysiology

    Outcome of nonerosive gastro-esophageal reflux disease patients with pathological acid exposure

    No full text
    AIM: To assess the management and outcome of nonerosive gastro-esophageal reflux disease (NERD) patients who were identified retrospectively, after a 5-year follow-up

    S100B-p53 disengagement by pentamidine promotes apoptosis and inhibits cellular migration via aquaporin-4 and metalloproteinase-2 inhibition in C6 glioma cells

    No full text
    S100 calcium-binding protein B (S100B) is highly expressed in glioma cells and promotes cancer cell survival via inhibition of the p53 protein. In melanoma cells, this S100B-p53 interaction is known to be inhibited by pentamidine isethionate, an antiprotozoal agent. Thus, the aim of the present study was to evaluate the effect of pentamidine on rat C6 glioma cell proliferation, migration and apoptosis in vitro. The change in C6 cell proliferation following treatment with pentamidine was determined by performing a 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide-formazan assay. Significant dose-dependent decreases in proliferation were observed at pentamidine concentrations of 0.05 µM (58.5±5%; P<0.05), 0.5 µM (40.6±7%; P<0.01) and 5 µM (13±4%; P<0.001) compared with the control (100% viability). Furthermore, treatment with 0.05, 0.5 and 5 µM pentamidine was associated with a significant increase in apoptosis versus the untreated cells, as determined by DNA fragmentation assays, immunofluorescence analysis of C6 chromatin using Hoechst staining, and immunoblot analysis of B-cell lymphoma-2 (Bcl-2)-associated X protein (100%, P<0.05; 453%, P<0.01; and 1000%, P<0.001, respectively) and Bcl-2 (-60%, P<0.001; -80.13%, P<0.001; -95%, P<0.001, respectively). In addition, the administration of 0.05, 0.5 and 5 µM pentamidine significantly upregulated the protein expression levels of p53 (681±87.5%, P<0.05; 1244±94.3%, P<0.01; and 2244±111%, P<0.001, respectively), and significantly downregulated the expression levels of matrix metalloproteinase-2 (42±2.3%, P<0.05; 71±2.5%, P<0.01; and 95.8±3.3%, P<0.001, respectively) and aquaporin 4 (38±2.5%, P<0.05; 69±2.6%, P<0.01; and 88±3.0%, P<0.001, respectively), compared with the untreated cells. The wound healing assay demonstrated that cell migration was significantly impaired by treatment with 0.05, 0.5 and 5 µM pentamidine compared with untreated cells (88±4.2%, P<0.05; 64±2%, P<0.01; and 42±3.1%, P<0.001, respectively). Although additional in vivo studies are required to clarify the current in vitro data, the present study indicates that pentamidine and S100B-p53 inhibitors may represent a novel approach for the treatment of glioma
    corecore