87 research outputs found

    A New Version of Reimers' law of Mass Loss Based on a Physical Approach

    Full text link
    We present a new semi-empirical relation for the mass loss of cool stellar winds, which so far has frequently been described by "Reimers' law". Originally, this relation was based solely on dimensional scaling arguments without any physical interpretation. In our approach, the wind is assumed to result from the spill-over of the extended chromosphere, possibly associated with the action of waves, especially Alfven waves, which are used as guidance in the derivation of the new formula. We obtain a relation akin to the original Reimers law, but which includes two new factors. They reflect how the chromospheric height depends on gravity and how the mechanical energy flux depends, mainly, on effective temperature. The new relation is tested and sensitively calibrated by modelling the blue end of the Horizontal Branch of globular clusters. The most significant difference from mass loss rates predicted by the Reimers relation is an increase by up to a factor of 3 for luminous late-type (super-)giants, in good agreement with observations.Comment: 12 pages, 4 figures, accepted by ApJ Letter

    Comparison theory and smooth minimal C*-dynamics

    Full text link
    We prove that the C*-algebra of a minimal diffeomorphism satisfies Blackadar's Fundamental Comparability Property for positive elements. This leads to the classification, in terms of K-theory and traces, of the isomorphism classes of countably generated Hilbert modules over such algebras, and to a similar classification for the closures of unitary orbits of self-adjoint elements. We also obtain a structure theorem for the Cuntz semigroup in this setting, and prove a conjecture of Blackadar and Handelman: the lower semicontinuous dimension functions are weakly dense in the space of all dimension functions. These results continue to hold in the broader setting of unital simple ASH algebras with slow dimension growth and stable rank one. Our main tool is a sharp bound on the radius of comparison of a recursive subhomogeneous C*-algebra. This is also used to construct uncountably many non-Morita-equivalent simple separable amenable C*-algebras with the same K-theory and tracial state space, providing a C*-algebraic analogue of McDuff's uncountable family of II_1 factors. We prove in passing that the range of the radius of comparison is exhausted by simple C*-algebras.Comment: 30 pages, no figure

    A Short Survey of Noncommutative Geometry

    Full text link
    We give a survey of selected topics in noncommutative geometry, with some emphasis on those directly related to physics, including our recent work with Dirk Kreimer on renormalization and the Riemann-Hilbert problem. We discuss at length two issues. The first is the relevance of the paradigm of geometric space, based on spectral considerations, which is central in the theory. As a simple illustration of the spectral formulation of geometry in the ordinary commutative case, we give a polynomial equation for geometries on the four dimensional sphere with fixed volume. The equation involves an idempotent e, playing the role of the instanton, and the Dirac operator D. It expresses the gamma five matrix as the pairing between the operator theoretic chern characters of e and D. It is of degree five in the idempotent and four in the Dirac operator which only appears through its commutant with the idempotent. It determines both the sphere and all its metrics with fixed volume form. We also show using the noncommutative analogue of the Polyakov action, how to obtain the noncommutative metric (in spectral form) on the noncommutative tori from the formal naive metric. We conclude on some questions related to string theory.Comment: Invited lecture for JMP 2000, 45

    Atmospheric Heating and Wind Acceleration: Results for Cool Evolved Stars based on Proposed Processes

    Full text link
    A chromosphere is a universal attribute of stars of spectral type later than ~F5. Evolved (K and M) giants and supergiants (including the zeta Aurigae binaries) show extended and highly turbulent chromospheres, which develop into slow massive winds. The associated continuous mass loss has a significant impact on stellar evolution, and thence on the chemical evolution of galaxies. Yet despite the fundamental importance of those winds in astrophysics, the question of their origin(s) remains unsolved. What sources heat a chromosphere? What is the role of the chromosphere in the formation of stellar winds? This chapter provides a review of the observational requirements and theoretical approaches for modeling chromospheric heating and the acceleration of winds in single cool, evolved stars and in eclipsing binary stars, including physical models that have recently been proposed. It describes the successes that have been achieved so far by invoking acoustic and MHD waves to provide a physical description of plasma heating and wind acceleration, and discusses the challenges that still remain.Comment: 46 pages, 9 figures, 1 table; modified and unedited manuscript; accepted version to appear in: Giants of Eclipse, eds. E. Griffin and T. Ake (Berlin: Springer

    A Simple Separable Exact C*-Algebra not Anti-isomorphic to Itself

    Full text link
    We give an example of an exact, stably finite, simple. separable C*-algebra D which is not isomorphic to its opposite algebra. Moreover, D has the following additional properties. It is stably finite, approximately divisible, has real rank zero and stable rank one, has a unique tracial state, and the order on projections over D is determined by traces. It also absorbs the Jiang-Su algebra Z, and in fact absorbs the 3^{\infty} UHF algebra. We can also explicitly compute the K-theory of D, namely K_0 (D) = Z[1/3] with the standard order, and K_1 (D) = 0, as well as the Cuntz semigroup of D.Comment: 16 pages; AMSLaTeX. The material on other possible K-groups for such an algebra has been moved to a separate paper (1309.4142 [math.OA]

    Detection of Water Vapor in the Photosphere of Arcturus

    Full text link
    We report detections of pure rotation lines of OH and H2O in the K1.5 III red-giant star Arcturus (alpha Bootis) using high-resolution, infrared spectra covering the regions 806-822 cm-1 (12.2-12.4 um) and 884-923 cm-1 (10.8-11.3 um). Arcturus is the hottest star yet to show water-vapor features in its disk-averaged spectrum. We argue that the water vapor lines originate from the photosphere, albeit in the outer layers. We are able to predict the observed strengths of OH and H2O lines satisfactorily after lowering the temperature structure of the very outer parts of the photosphere (log tau_500=-3.8 and beyond) compared to a flux-constant, hydrostatic, standard MARCS model photosphere. Our new model is consistently calculated including chemical equilibrium and radiative transfer from the given temperature structure. Possible reasons for a temperature decrease in the outer-most parts of the photosphere and the assumed break-down of the assumptions made in classical model-atmosphere codes are discussed.Comment: To appear in ApJ. See also http://www.astro.uu.se/~ryde/ART

    Water isotopes in desiccating lichens

    Get PDF
    The stable isotopic composition of water is routinely used as a tracer to study water exchange processes in vascular plants and ecosystems. To date, no study has focussed on isotope processes in non-vascular, poikilohydric organisms such as lichens and bryophytes. To understand basic isotope exchange processes of non-vascular plants, thallus water isotopic composition was studied in various green-algal lichens exposed to desiccation. The study indicates that lichens equilibrate with the isotopic composition of surrounding water vapour. A model was developed as a proof of concept that accounts for the specific water relations of these poikilohydric organisms. The approach incorporates first their variable thallus water potential and second a compartmentation of the thallus water into two isotopically distinct but connected water pools. Moreover, the results represent first steps towards the development of poikilohydric organisms as a recorder of ambient vapour isotopic composition

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Multiwavelength studies of MHD waves in the solar chromosphere: An overview of recent results

    Get PDF
    The chromosphere is a thin layer of the solar atmosphere that bridges the relatively cool photosphere and the intensely heated transition region and corona. Compressible and incompressible waves propagating through the chromosphere can supply significant amounts of energy to the interface region and corona. In recent years an abundance of high-resolution observations from state-of-the-art facilities have provided new and exciting ways of disentangling the characteristics of oscillatory phenomena propagating through the dynamic chromosphere. Coupled with rapid advancements in magnetohydrodynamic wave theory, we are now in an ideal position to thoroughly investigate the role waves play in supplying energy to sustain chromospheric and coronal heating. Here, we review the recent progress made in characterising, categorising and interpreting oscillations manifesting in the solar chromosphere, with an impetus placed on their intrinsic energetics.Comment: 48 pages, 25 figures, accepted into Space Science Review

    Solar Coronal Plumes

    Get PDF
    Polar plumes are thin long ray-like structures that project beyond the limb of the Sun polar regions, maintaining their identity over distances of several solar radii. Plumes have been first observed in white-light (WL) images of the Sun, but, with the advent of the space era, they have been identified also in X-ray and UV wavelengths (XUV) and, possibly, even in in situ data. This review traces the history of plumes, from the time they have been first imaged, to the complex means by which nowadays we attempt to reconstruct their 3-D structure. Spectroscopic techniques allowed us also to infer the physical parameters of plumes and estimate their electron and kinetic temperatures and their densities. However, perhaps the most interesting problem we need to solve is the role they cover in the solar wind origin and acceleration: Does the solar wind emanate from plumes or from the ambient coronal hole wherein they are embedded? Do plumes have a role in solar wind acceleration and mass loading? Answers to these questions are still somewhat ambiguous and theoretical modeling does not provide definite answers either. Recent data, with an unprecedented high spatial and temporal resolution, provide new information on the fine structure of plumes, their temporal evolution and relationship with other transient phenomena that may shed further light on these elusive features
    corecore