15,761 research outputs found

    Is Λ\LambdaCDM an effective CCDM cosmology?

    Full text link
    We show that a cosmology driven by gravitationally induced particle production of all non-relativistic species existing in the present Universe mimics exactly the observed flat accelerating Λ\LambdaCDM cosmology with just one dynamical free parameter. This kind of scenario includes the creation cold dark matter (CCDM) model [Lima, Jesus & Oliveira, JCAP 011(2010)027] as a particular case and also provides a natural reduction of the dark sector since the vacuum component is not needed to accelerate the Universe. The new cosmic scenario is equivalent to Λ\LambdaCDM both at the background and perturbative levels and the associated creation process is also in agreement with the universality of the gravitational interaction and equivalence principle. Implicitly, it also suggests that the present day astronomical observations cannot be considered the ultimate proof of cosmic vacuum effects in the evolved Universe because Λ\LambdaCDM may be only an effective cosmology.Comment: 6 pages, 2 figures, changes in the abstract, introduction, new references and typo correction

    Asteroseismology and Magnetic Cycles

    Full text link
    Small cyclic variations in the frequencies of acoustic modes are expected to be a common phenomenon in solar-like pulsators, as a result of stellar magnetic activity cycles. The frequency variations observed throughout the solar and stellar cycles contain information about structural changes that take place inside the stars as well as about variations in magnetic field structure and intensity. The task of inferring and disentangling that information is, however, not a trivial one. In the sun and solar-like pulsators, the direct effect of the magnetic field on the oscillations might be significantly important in regions of strong magnetic field (such as solar- / stellar-spots), where the Lorentz force can be comparable to the gas-pressure gradient. Our aim is to determine the sun- / stellar-spots effect on the oscillation frequencies and attempt to understand if this effect contributes strongly to the frequency changes observed along the magnetic cycle. The total contribution of the spots to the frequency shifts results from a combination of direct and indirect effects of the magnetic field on the oscillations. In this first work we considered only the indirect effect associated with changes in the stratification within the starspot. Based on the solution of the wave equation and the variational principle we estimated the impact of these stratification changes on the oscillation frequencies of global modes in the sun and found that the induced frequency shifts are about two orders of magnitude smaller than the frequency shifts observed over the solar cycle.Comment: 4 pages, 6 figures, ESF Conference: The Modern Era of Helio- and Asteroseismology, to be published on 3 December 2012 at Astronomische Nachrichten 333, No. 10, 1032-103

    Accessing the Acceleration of the Universe with Sunyaev-Zel'dovich and X-ray Data from Galaxy Clusters

    Full text link
    By using exclusively the Sunyaev-Zel'dovich effect and X-ray surface brightness data from 25 galaxy clusters in the redshift range 0.023< z < 0.784 we access cosmic acceleration employing a kinematic description. Such result is fully independent on the validity of any metric gravity theory, the possible matter-energy contents filling the Universe, as well as on the SNe Ia Hubble diagram.Comment: 3 pages, 4 figures, To appear in the Proceedings of the Twelfth Marcel Grossmann Meeting on General Relativit

    Are Galaxy Clusters Suggesting an Accelerating Universe?

    Full text link
    The present cosmic accelerating stage is discussed through a new kinematic method based on the Sunyaev- Zel'dovich effect (SZE) and X-ray surface brightness data from galaxy clusters. By using the SZE/X-ray data from 38 galaxy clusters in the redshift range 0.14z0.890.14 \leq z \leq 0.89 [Bonamente et al., Astrop. J. {\bf 647}, 25 (2006)] it is found that the present Universe is accelerating and that the transition from an earlier decelerating to a late time accelerating regime is relatively recent. The ability of the ongoing Planck satellite mission to obtain tighter constraints on the expansion history through SZE/X-ray angular diameters is also discussed. Our results are fully independent on the validity of any metric gravity theory, the possible matter- energy contents filling the Universe, as well as on the SNe Ia Hubble diagram from which the presenting accelerating stage was inferred.Comment: 6 pages, 6 figures, AIP Conf. Proc. Invisible Universe: Proceedings of the Conferenc

    Wang-Landau sampling in three-dimensional polymers

    Full text link
    Monte Carlo simulations using Wang-Landau sampling are performed to study three-dimensional chains of homopolymers on a lattice. We confirm the accuracy of the method by calculating the thermodynamic properties of this system. Our results are in good agreement with those obtained using Metropolis importance sampling. This algorithm enables one to accurately simulate the usually hardly accessible low-temperature regions since it determines the density of states in a single simulation.Comment: 5 pages, 9 figures arch-ive/Brazilian Journal of Physic

    End-users productivity in model-based spreadsheets: an empirical study

    Get PDF
    Lecture Notes in Computer Science Volume 6654, 2011Spreadsheets are widely used and studies show that most of the existing ones contain non-trivial errors. To improve end-users productivity, recent research proposes the use of a model-driven engineering approach to spreadsheets. In this paper we conduct the first empirical study to assess the effectiveness and efficiency of this approach. A set of spreadsheet end users worked with two different model-based spreadsheets. We present and analyze here the results achieved.(undefined

    Melting temperature of screened Wigner crystal on helium films by molecular dynamics

    Full text link
    Using molecular dynamics (MD) simulation, we have calculated the melting temperature of two-dimensional electron systems on 240 240\AA-500 500\AA helium films supported by substrates of dielectric constants ϵs=2.211.9 \epsilon_{s}=2.2-11.9 at areal densities nn varying from 3×109 3\times 10^{9} cm2^{-2} to 1.3×1010 1.3\times 10^{10} cm2^{-2}. Our results are in good agreement with the available theoretical and experimental results.Comment: 4 pages and 4 figure

    Type-safe evolution of spreadsheets

    Get PDF
    Lecture Notes in Computer Science Volume 6603, 2011Spreadsheets are notoriously error-prone. To help avoid the introduction of errors when changing spreadsheets, models that capture the structure and interdependencies of spreadsheets at a conceptual level have been proposed. Thus, spreadsheet evolution can be made safe within the confines of a model. As in any other model/instance setting, evolution may not only require changes at the instance level but also at the model level. When model changes are required, the safety of instance evolution can not be guarded by the model alone. We have designed an appropriate representation of spreadsheet models, including the fundamental notions of formulæand references. For these models and their instances, we have designed coupled transformation rules that cover specific spreadsheet evolution steps, such as the insertion of columns in all occurrences of a repeated block of cells. Each model-level transformation rule is coupled with instance level migration rules from the source to the target model and vice versa. These coupled rules can be composed to create compound transformations at the model level inducing compound transformations at the instance level. This approach guarantees safe evolution of spreadsheets even when models change.Supported by Fundac ao para a Ciencia e a Tecnologia, grant no. SFRH/BD/30231/2006. Supported by Fundac ao para a Ciencia e a Tecnologia, grant no. SFRH/BD/30215/2006. Work supported by the SSaaPP project, FCT contract no. PTDC/EIA-CCO/108613/200
    corecore