
End-users Productivity in Model-based Spreadsheets:
An Empirical Study?

Laura Beckwith1, Jácome Cunha2,3, João Paulo Fernandes2,4, and João Saraiva2

1 HCIResearcher, Denmark, beckwith@hciResearcher.com
2 Universidade do Minho, Portugal, {jacome,jpaulo,jas}@di.uminho.pt

3 ESTGF, Instituto Politécnico do Porto, Portugal
4 Universidade do Porto, Portugal

Abstract. Spreadsheets are widely used and studies show that most of the exist-
ing ones contain non-trivial errors. To improve end-users productivity, recent re-
search proposes the use of a model-driven engineering approach to spreadsheets.
In this paper we conduct the first empirical study to assess the effectiveness and
efficiency of this approach. A set of spreadsheet end users worked with two differ-
ent model-based spreadsheets. We present and analyze here the results achieved.

1 Introduction

Spreadsheets (SS) can be viewed as programming environments for non-professional
programmers, the so-called “end users” [7]. End-user programmers vastly outnumber
professional ones and create hundreds of millions of spreadsheets every year [10], espe-
cially for developing business applications. As numerous studies have shown, this high
production rate is accompanied by an alarming high rate of errors, with some reports
claiming that 90% of real-world spreadsheets contain errors [8, 9].

In order to improve the robustness of SS, a considerable amount of research has
been done [1, 3–6]. One of the promising solutions advocates the use of a Model-Driven
Engineering (MDE) approach, in which a business model of the spreadsheet data is de-
fined; end users are then guided to introduce data that conforms to the model [4]. Sev-
eral models have been proposed namely, templates [1], ClassSheets [3, 6] and relational
models [5] and also techniques to infer models from (legacy) spreadsheet data [1, 3].

Although all these works claim that a MDE approach improves end-users produc-
tivity, the reality is that there is no detailed evaluation study to support this idea. In this
paper, we present an empirical study that we have conducted with the aim of analyz-
ing the practical influence that models have on productivity. We consider two different
model-based SS, as proposed in [4, 5]. We assess the productivity in introducing, up-
dating and querying data in those two model-based SS and in a traditional one.

Our study is necessary and useful: it is based on a sound experimental setting which
allows us to draw sound conclusions and directions for further studies on the same topic.
With it, we wish to answer the following research questions:

RQ1 Do end users introduce fewer errors when they use one of the model-based
spreadsheet versus the original unmodified spreadsheet?

RQ2 Are end users more efficient using the model-based ones?
? Supported by Fundação para a Ciência e a Tecnologia, grants no. SFRH/BD/30231/2006,
SFRH/BPD/46987/2008 and PTDC/EIA-CCO/108613/2008.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55634187?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


II

RQ3 Do particular models lead to fewer errors in particular tasks?

We used a within subjects design, where each participant received a task list for each
of three spreadsheet environments. Participants were asked to do various tasks in each
spreadsheet, for example: data entry, modifications to existing data, and calculations of
the data in the spreadsheet. They were encouraged to work as quickly as possible, but
were not given time limits for any specific spreadsheet.

2 Model-based Spreadsheets

Two different techniques to tackle the problem of preventing errors in SS have been
proposed [4, 5]. In order to introduce them we will rely on the spreadsheet shown in
Fig. 1, which represents a movie renting system (labels should be self-explicative).

Fig. 1: Part of a spreadsheet representing a movie renting system.

The Refactored Model: The spreadsheet in Fig. 1 shows an instance of a renting sys-
tem containing redundant information: for example, client Paul’s information appears
twice! This kind of redundancy makes maintenance complex and error-prone. A mis-
take is easily made (for example, by mistyping a name) and thus corrupting the data.
The same information can be stored without redundancy: in the database realm, tech-
niques for data normalization, based on the exploitation of functional dependencies
(FDs) inherent in the data, are commonly used to minimize duplication of information
and improve data integrity [2]. We have adapted these techniques to work with spread-
sheets: from the spreadsheet data we infer a set of normalized FDs, and from them, we
compute a relational model [5]. A spreadsheet respecting such model is shown in Fig. 2.

Fig. 2: Part of a refactored spreadsheet representing a movie renting system.

The obtained data organization solves two well-known database problems, namely
update anomalies and deletion anomalies [2]. The former occurs when we change in-
formation in one tuple but leave the same information unchanged in others, e.g., if a user
changes the rent per day of mv23 from 0.5 to 0.6. This value occurs only once in the
modular spreadsheet, where it must be updated. The latter happens when we delete a
tuple and lose other information as a side effect, e.g., if a user deletes the rent in row 3
in the original spreadsheet all the information concerning movie mv1 is eliminated.

Since we know the data relations and relationships, we can generate SS that re-
spect them, and thus, help end users. For example, in the renter table, the generated
spreadsheet should not allow the user to introduce two renters with the same number.

The new spreadsheet improves modularity and detects the introduction of incorrect
data, and also eliminates redundancy; this should help end users commit less errors.



III

The Visual Model: In [4], a technique to enhance a system with mechanisms to guide
end users to introduce correct data was proposed. Using the relational database schema
induced by the data we construct an environment that respects that schema. For ex-
ample, for the movie spreadsheet, the system must not allow the introduction of two
different movies with the same number. Instead, it offers to the user a list of possible
movies, such that the value to fill in the cell can be chosen. This new spreadsheet, that
we show in Fig. 3, also includes advanced features which provide information to the
end user about correct data that can be introduced.

Fig. 3: Part of a visual spreadsheet representing a movie renting system.

We consider three types of advanced features: (bidirectional) auto-completion of
column values, non-editable columns and safe deletion of rows.

3 Analyzing End-users Performance

Fig. 4: Global effectiveness results.

Effectiveness Each participant was handed
3 different lists of tasks to perform on
3 different spreadsheets, each of which
constructed under a different model. We
have graded their performance under each
model, obtaining the results in Fig. 4. We
notice that no model is neither the best nor
the worst for all spreadsheets. Neverthe-
less, the results seem to indicate that models
from [3] and [5] are not effective in reduc-
ing the number of errors, since one of them
is always getting the lowest scores. This intuition deserves further development.

One may argue that original is the model that users are more accustomed to. Never-
theless, we remark that the more complex models refactored and visual where given no
explanation; a part of our study was also to learn whether they could live on their own.

Our next step was to investigate whether the (apparent) poor results obtained by
complex models are due to their own nature or if they result from participants not having
understood them. In order to realize this, we studied the participations that did not
achieve a score of at least 50%: 0% in original, 25% in refactored and 21% in visual.
While in original no participation was graded under 50%, this was not the case for
refactored and visual; this may have degraded their overall average results. For these
participations, we analyzed the questionnaire that participants were asked to fill in after
the session. The classifications for the post session questionnaires, for participations in
the study that were graded under 50% is 24% for refactored and 31% for visual.

These results show that participants obtaining poor gradings on their effectiveness,
also got extremely poor gradings for their answers to the questions assessing how they
understood (or not) the models. Indeed, we can see that they were not, in average, able



IV

to answer correctly to (at least) two thirds of the questions raised in the post session
questionnaire. From such results we can read that (roughly) a quarter of participants
was not able to understand the more complex models used in the study, which might
have caused a degradation of the global effectiveness results for these models. This also
suggests that if these models are to be used within an organization, it is necessary to take
some time to introduce them to end users in order to achieve maximum effectiveness.

Effectiveness by Task Type: Next, we wanted to realize how effective models are to
perform the different types of tasks that we proposed: insertion, edition and statistics.

Fig. 5: Effectiveness results for insertion.

i) Data insertion: the original model
was the most effective, for all 3 spread-
sheets, being closely followed by refac-
tored and visual for DISHES, and by visual
for PROJECTS. The refactored model, for
PROJECTS, and refactored and visual, for
PROPERTIES, proved not to be competitive
for data insertion. Again, we believe that
this in part due to the lack of introduction
to these models: the insertion of new data is
the task that most likely benefits from un-
derstanding them, and also the one that can be otherwise most affected. This is con-
firmed by the effectiveness results observed for other task types, that we present next.

Fig. 6: Effectiveness results for edition.

ii) Data edition once a spreadsheet is
populated, we can effectively use models
to edit it. This is the case of refactored
for PROJECTS and for PROPERTIES. orig-
inal is the most effective in editing for
DISHES. visual is comparable to refactored
for DISHES, but for other spreadsheets, it al-
ways achieves the lowest scores.
iii) Statistics: we can see that visual ob-
tained the best results for DISHES, and that
refactored obtained the best results for both
spreadsheets PROJECTS and PROPERTIES.
We can also see that all models obtained the worst results for exactly one spreadsheet.

Fig. 7: Effectiveness results for statistics.

Results from i), ii) and iii) confirm that
the models are competitive against the orig-
inal model. On the other hand, these re-
sults allow us to draw some new conclu-
sions: if the models are going to be used
within an organization, it may not always
be necessary to introduce them prior to their
use. Indeed, if an organization mostly ed-
its spreadsheet data or computes new val-
ues from such data, and does not insert new
data, then the models, and specially refac-



V

tored, may deliver good results even when they are not explicitly explained (as it was
the case in our study). These results also show that it is in the data insertion tasks that
the models need to be better understood by end users in order to increase effectiveness.

Fig. 8: Global efficiency results.

Efficiency We started by measuring, for
each participant, and for each spreadsheet,
the time elapsed from the moment partici-
pants started reading the list of tasks to un-
dertake until the moment they completed
the tasks proposed and moved on to a dif-
ferent spreadsheet or concluded the study.
We are able of calculating these times by
looking at the individual screen activity that
was recorded during the study, for each par-
ticipant: the participant stopping interacting
with the computer signals the end of his/her work on a spreadsheet. The measured pe-
riod therefore includes the time that participants took trying to understand the models
they received each spreadsheet in. Fig. 8 presents the average of the overall times, for
each spreadsheet and for each model.

We can see that refactored and visual are competitive against original. Indeed, par-
ticipants performed fastest for DISHES in visual, and fastest for PROPERTIES in refac-
tored. The original model got the best result for PROJECTS. Again, note that no intro-
duction to refactored or visual preceded the study. Therefore, it is reasonable to assume
that, for these models, the results observed include some time overhead. In an attempt
to measure this overhead we extracted some more information out of the results of our
study: we measured the time elapsed from the moment participants started reading, for
each spreadsheet, the list of tasks to perform, until the moment they actually began edit-
ing the spreadsheet. We assume that this period corresponds exactly to the overhead of
understanding each model. The average results obtained are presented in Table 1.

original refactored visual

DISHES 2′ 6′ 1′

PROJECTS 2′ 4′ 2′

PROPERTIES 2′ 2′ 2′

Table 1: Average overhead results.

There is a constant average overhead of 2
minutes for almost all models and all spread-
sheets, with the most significant exceptions
occurring for refactored, for both DISHES
and PROJECTS. In these cases, we can clearly
notice an important time gap, which pro-
vides some evidence that refactored is most
likely the hardest model to understand. This
also comes in line with previous indications that the merits of the models can be max-
imized if we take the time to explain them to end users. For the particular case of
efficiency, this means that the results shown in Fig. 8 could be further improved for the
more complex models, and particularly for refactored.

4 Conclusions

We have presented the results of an empirical study that we conducted in order to assess
the practical interest of models for spreadsheets. From the preparation of the study, from



VI

running it and from its results, we can summarize our main contributions as follows:
i) we have shown that MDE techniques can be adapted for end-users software; ii) we
proved empirically that models can bring benefits for spreadsheet end users; iii) we
proposed a methodology that can be reused in studies similar to ours.

Now, we seek to answer our initial research questions.
RQ1 Our observations indicate that model-based spreadsheets can improve end-user
effectiveness. Even if this is not always the case, our results also indicate that deeper
insight on the spreadsheet models is required to maximize effectiveness.
RQ2 We observed that, frequently, the more elaborate spreadsheet models allowed
users to perform faster. Nevertheless, we were not fully able of isolating the time that
participants took trying to understand the models they were working with. So, we be-
lieve that the observed efficiency results could also be better for refactored and visual
if they had been previously introduced.
RQ3 Although this was not observed for inserting tasks, for editing and querying data
the models did help end users. Furthermore, the results seem to indicate that the insert-
ing data task is the one that benefits the most from better understanding the models.

With this study we have shown that there is potential in MDE techniques for helping
spreadsheet end users. The study of these techniques for professional users of spread-
sheets seems a promising research topic. Moreover, the use of MDE techniques in other
non-professional softwares should also be investigated.

References

1. Abraham, R., Erwig, M.: Inferring templates from spreadsheets. In: Proc. of the 28th Int.
Conference on Software Engineering. pp. 182–191. ACM, New York, NY, USA (2006)

2. Codd, E.F.: A relational model of data for large shared data banks. Communications of the
ACM 13, 377–387 (June 1970)

3. Cunha, J., Erwig, M., Saraiva, J.: Automatically inferring classsheet models from spread-
sheets. In: Proc. of the 2010 IEEE Symposium on Visual Languages and Human-Centric
Computing. pp. 93–100. IEEE Computer Society, Washington, DC, USA (2010)

4. Cunha, J., Saraiva, J., Visser, J.: Discovery-based edit assistance for spreadsheets. In: Proc.
of the 2009 IEEE Symposium on Visual Languages and Human-Centric Computing. pp.
233–237. IEEE Computer Society, Washington, DC, USA (2009)

5. Cunha, J., Saraiva, J., Visser, J.: From spreadsheets to relational databases and back. In:
PEPM ’09: Proceedings of the 2009 ACM SIGPLAN Workshop on Partial Evaluation and
Program Manipulation. pp. 179–188. ACM, New York, NY, USA (2009)

6. Engels, G., Erwig, M.: ClassSheets: Automatic generation of spreadsheet applications from
object-oriented specifications. In: Proceedings of the 20th IEEE/ACM International Confer-
ence on Automated Software Engineering. pp. 124–133. ACM, New York, NY, USA (2005)

7. Nardi, B.A.: A Small Matter of Programming: Perspectives on End User Computing. MIT
Press, Cambridge, MA, USA (1993)

8. Panko, R.R.: Spreadsheet errors: What we know. What we think we can do. Proceedings of
the Spreadsheet Risk Symposium, European Spreadsheet Risks Interest Group (July 2000)

9. Rajalingham, K., Chadwick, D., Knight, B.: Classification of spreadsheet errors. European
Spreadsheet Risks Interest Group (EuSpRIG) (2001)

10. Scaffidi, C., Shaw, M., Myers, B.: Estimating the numbers of end users and end user pro-
grammers. In: Proceedings of the 2005 IEEE Symposium on Visual Languages and Human-
Centric Computing. pp. 207–214. IEEE Computer Society, Washington, DC, USA (2005)


