325 research outputs found

    Are voltage-gated sodium channels on the dorsal root ganglion involved in the development of neuropathic pain?

    Get PDF
    Neuropathic pain is a common clinical condition. Current treatments are often inadequate, ineffective, or produce potentially severe adverse effects. Understanding the mechanisms that underlie the development and maintenance of neuropathic pain will be helpful in identifying new therapeutic targets and developing effective strategies for the prevention and/or treatment of this disorder. The genesis of neuropathic pain is reliant, at least in part, on abnormal spontaneous activity within sensory neurons. Therefore, voltage-gated sodium channels, which are essential for the generation and conduction of action potentials, are potential targets for treating neuropathic pain. However, preclinical studies have shown unexpected results because most pain-associated voltage-gated channels in the dorsal root ganglion are down-regulated after peripheral nerve injury. The role of dorsal root ganglion voltage-gated channels in neuropathic pain is still unclear. In this report, we describe the expression and distribution of voltage-gated sodium channels in the dorsal root ganglion. We also review evidence regarding changes in their expression under neuropathic pain conditions and their roles in behavioral responses in a variety of neuropathic pain models. We finally discuss their potential involvement in neuropathic pain

    Vasodilatation in the rat dorsal hindpaw induced by activation of sensory neurons is reduced by Paclitaxel

    Get PDF
    Peripheral neuropathy is a major side effect following treatment with the cancer chemotherapeutic drug paclitaxel. Whether paclitaxel-induced peripheral neuropathy is secondary to altered function of small diameter sensory neurons remains controversial. To ascertain whether the function of the small diameter sensory neurons was altered following systemic administration of paclitaxel, we injected male Sprague Dawley rats with 1 mg/kg paclitaxel every other day for a total of four doses and examined vasodilatation in the hindpaw at day 14 as an indirect measure of calcitonin gene related peptide (CGRP) release. In paclitaxel-treated rats, the vasodilatation induced by either intradermal injection of capsaicin into the hindpaw or electrical stimulation of the sciatic nerve was significantly attenuated in comparison to vehicle-injected animals. Paclitaxel treatment, however, did not affect direct vasodilatation induced by intradermal injection of methacholine or CGRP, demonstrating that the blood vessels’ ability to dilate was intact. Paclitaxel treatment did not alter the compound action potentials or conduction velocity of C-fibers. The stimulated release of CGRP from the central terminals in the spinal cord was not altered in paclitaxel-injected animals. These results suggest that paclitaxel affects the peripheral endings of sensory neurons to alter transmitter release, and this may contribute to the symptoms seen in neuropathy

    PKCε-dependent potentiation of TTX-resistant Nav1.8 current by neurokinin-1 receptor activation in rat dorsal root ganglion neurons

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Substance P (SP), which mainly exists in a subtype of small-diameter dorsal root ganglion (DRG) neurons, is an important signal molecule in pain processing in the spinal cord. Our previous results have proved the expression of SP receptor neurokinin-1 (NK-1) on DRG neurons and its interaction with transient receptor potential vanilloid 1 (TRPV1) receptor.</p> <p>Results</p> <p>In this study we investigated the effect of NK-1 receptor agonist on Na<sub>v</sub>1.8, a tetrodotoxin (TTX)-resistant sodium channel, in rat small-diameter DRG neurons employing whole-cell patch clamp recordings. NK-1 agonist [Sar<sup>9</sup>, Met(O<sub>2</sub>)<sup>11</sup>]-substance P (Sar-SP) significantly enhanced the Na<sub>v</sub>1.8 currents in a subgroup of small-diameter DRG neurons under both the normal and inflammatory situation, and the enhancement was blocked by NK-1 antagonist Win51708 and protein kinase C (PKC) inhibitor bisindolylmaleimide (BIM), but not the protein kinase A (PKA) inhibitor H89. In particular, the inhibitor of PKCε, a PKC isoform, completely blocked this effect. Under current clamp model, Sar-SP reduced the amount of current required to evoke action potentials and increased the firing rate in a subgroup of DRG neurons.</p> <p>Conclusion</p> <p>These data suggest that activation of NK-1 receptor potentiates Na<sub>v</sub>1.8 sodium current via PKCε-dependent signaling pathway, probably participating in the generation of inflammatory hyperalgesia.</p

    Intra- and interfamily phenotypic diversity in pain syndromes associated with a gain-of-function variant of NaV1.7

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sodium channel Na<sub>V</sub>1.7 is preferentially expressed within dorsal root ganglia (DRG), trigeminal ganglia and sympathetic ganglion neurons and their fine-diamter axons, where it acts as a threshold channel, amplifying stimuli such as generator potentials in nociceptors. Gain-of-function mutations and variants (single amino acid substitutions) of Na<sub>V</sub>1.7 have been linked to three pain syndromes: Inherited Erythromelalgia (IEM), Paroxysmal Extreme Pain Disorder (PEPD), and Small Fiber Neuropathy (SFN). IEM is characterized clinically by burning pain and redness that is usually focused on the distal extremities, precipitated by mild warmth and relieved by cooling, and is caused by mutations that hyperpolarize activation, slow deactivation, and enhance the channel ramp response. PEPD is characterized by perirectal, periocular or perimandibular pain, often triggered by defecation or lower body stimulation, and is caused by mutations that severely impair fast-inactivation. SFN presents a clinical picture dominated by neuropathic pain and autonomic symptoms; gain-of-function variants have been reported to be present in approximately 30% of patients with biopsy-confirmed idiopathic SFN, and functional testing has shown altered fast-inactivation, slow-inactivation or resurgent current. In this paper we describe three patients who house the Na<sub>V</sub>1.7/I228M variant.</p> <p>Methods</p> <p>We have used clinical assessment of patients, quantitative sensory testing and skin biopsy to study these patients, including two siblings in one family, in whom genomic screening demonstrated the I228M Na<sub>V</sub>1.7 variant. Electrophysiology (voltage-clamp and current-clamp) was used to test functional effects of the variant channel.</p> <p>Results</p> <p>We report three different clinical presentations of the I228M Na<sub>V</sub>1.7 variant: presentation with severe facial pain, presentation with distal (feet, hands) pain, and presentation with scalp discomfort in three patients housing this Na<sub>V</sub>1.7 variant, two of which are from a single family. We also demonstrate that the Na<sub>V</sub>1.7/I228M variant impairs slow-inactivation, and produces hyperexcitability in both trigeminal ganglion and DRG neurons.</p> <p>Conclusion</p> <p>Our results demonstrate intra- and interfamily phenotypic diversity in pain syndromes produced by a gain-of-function variant of Na<sub>V</sub>1.7.</p

    Late-onset erythromelalgia in a previously healthy young woman: a case report and review of the literature

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Erythromelalgia is a rare disorder characterized by episodic erythema and burning pain, which commonly involves the extremities. We present a case of late onset erythromelalgia in a previously healthy young woman and briefly review the literature. Our patient's case also has additional uncommon features not reported previously.</p> <p>Case presentation</p> <p>A 33-year-old previously healthy Caucasian woman presented with complaints of episodic burning pain and flushing occurring in a central distribution involving her face, ears, upper chest and, occasionally, her upper extremities. Her symptoms were triggered by lying down or warm temperature exposure and were relieved by cooling measures. Extensive diagnostic work-up looking for secondary causes for the symptoms was negative and the diagnosis of erythromelalgia was made based on details provided in her clinical history supported by raised temperature in the affected area measured by thermography during a symptomatic episode. The patient did not respond to pharmacological therapy or surgical sympathectomy. She was advised on lifestyle modification to avoid activities which triggered her symptoms. She was hypothermic with a core temperature between 92 and 95°F. She also had premature ovarian failure, which had not previously been reported.</p> <p>Conclusion</p> <p>Erythromelalgia is a rare disorder of unknown cause. There is no confirmatory diagnostic test; diagnosis is based on details provided in the patient's medical history and physical examination during the episodes. For those affected, this disorder leads to significant long-term morbidity and unfortunately, to date, no definitive therapy is available except for lifestyle modification.</p

    Targeting adenosine monophosphate-activated protein kinase (AMPK) in preclinical models reveals a potential mechanism for the treatment of neuropathic pain

    Get PDF
    Neuropathic pain is a debilitating clinical condition with few efficacious treatments, warranting development of novel therapeutics. We hypothesized that dysregulated translation regulation pathways may underlie neuropathic pain. Peripheral nerve injury induced reorganization of translation machinery in the peripheral nervous system of rats and mice, including enhanced mTOR and ERK activity, increased phosphorylation of mTOR and ERK downstream targets, augmented eIF4F complex formation and enhanced nascent protein synthesis. The AMP activated protein kinase (AMPK) activators, metformin and A769662, inhibited translation regulation signaling pathways, eIF4F complex formation, nascent protein synthesis in injured nerves and sodium channel-dependent excitability of sensory neurons resulting in a resolution of neuropathic allodynia. Therefore, injury-induced dysregulation of translation control underlies pathology leading to neuropathic pain and reveals AMPK as a novel therapeutic target for the potential treatment of neuropathic pain

    Varicella-Zoster viruses associated with post-herpetic neuralgia induce sodium current density increases in the ND7-23 Nav-1.8 neuroblastoma cell line

    Get PDF
    Post-herpetic neuralgia (PHN) is the most significant complication of herpes zoster caused by reactivation of latent Varicella-Zoster virus (VZV). We undertook a heterologous infection in vitro study to determine whether PHN-associated VZV isolates induce changes in sodium ion channel currents known to be associated with neuropathic pain. Twenty VZV isolates were studied blind from 11 PHN and 9 non-PHN subjects. Viruses were propagated in the MeWo cell line from which cell-free virus was harvested and applied to the ND7/23-Nav1.8 rat DRG x mouse neuroblastoma hybrid cell line which showed constitutive expression of the exogenous Nav 1.8, and endogenous expression of Nav 1.6 and Nav 1.7 genes all encoding sodium ion channels the dysregulation of which is associated with a range of neuropathic pain syndromes. After 72 hrs all three classes of VZV gene transcripts were detected in the absence of infectious virus. Single cell sodium ion channel recording was performed after 72 hr by voltage-clamping. PHN-associated VZV significantly increased sodium current amplitude in the cell line when compared with non-PHN VZV, wild-type (Dumas) or vaccine VZV strains ((POka, Merck and GSK). These sodium current increases were unaffected by acyclovir pre-treatment but were abolished by exposure to Tetrodotoxin (TTX) which blocks the TTX-sensitive fast Nav 1.6 and Nav 1.7 channels but not the TTX-resistant slow Nav 1.8 channel. PHN-associated VZV sodium current increases were therefore mediated in part by the Nav 1.6 and Nav 1.7 sodium ion channels. An additional observation was a modest increase in message levels of both Nav1.6 and Nav1.7 mRNA but not Nav 1.8 in PHN virally infected cells

    Evidence for Two Modes of Synergistic Induction of Apoptosis by Mapatumumab and Oxaliplatin in Combination with Hyperthermia in Human Colon Cancer Cells

    Get PDF
    Colorectal cancer is the third leading cause of cancer-related mortality in the world-- the main cause of death from colorectal cancer is hepatic metastases, which can be treated with isolated hepatic perfusion (IHP). Searching for the most clinically relevant approaches for treating colorectal metastatic disease by isolated hepatic perfusion (IHP), we developed the application of oxaliplatin concomitantly with hyperthermia and humanized death receptor 4 (DR4) antibody mapatumumab (Mapa), and investigated the molecular mechanisms of this multimodality treatment in human colon cancer cell lines CX-1 and HCT116 as well as human colon cancer stem cells Tu-12, Tu-21 and Tu-22. We showed here, in this study, that the synergistic effect of the multimodality treatment-induced apoptosis was caspase dependent and activated death signaling via both the extrinsic apoptotic pathway and the intrinsic pathway. Death signaling was activated by c-Jun N-terminal kinase (JNK) signaling which led to Bcl-xL phosphorylation at serine 62, decreasing the anti-apoptotic activity of Bcl-xL, which contributed to the intrinsic pathway. The downregulation of cellular FLICE inhibitory protein long isoform (c-FLIPL) in the extrinsic pathway was accomplished through ubiquitination at lysine residue (K) 195 and protein synthesis inhibition. Overexpression of c-FLIPL mutant (K195R) and Bcl-xL mutant (S62A) completely abrogated the synergistic effect. The successful outcome of this study supports the application of multimodality strategy to patients with colorectal hepatic metastases who fail to respond to standard chemoradiotherapy that predominantly targets the mitochondrial apoptotic pathway. © 2013 Song et al

    Familial neuralgia of occipital and intermedius nerves in a Chinese family

    Get PDF
    Cranial nerve neuralgia usually occurs sporadically. Nonetheless, familial cases of trigeminal neuralgia are not uncommon with a reported incidence of 1–2%, suggestive of an autosomal dominant inheritance. In contrast, familial occipital neuralgia is rarely reported with only one report in the literature. We present a Chinese family with five cases of occipital and nervus intermedius neuralgia alone or in combination in three generations. All persons afflicted with occipital neuralgia have suffered from paroxysmal ‘electric wave’-like pain for years. In the first generation, the father (index patient) was affected, in the second generation all his three daughters (with two sons spared) and in the third generation a daughter’s male offspring is affected. This familial pattern suggests an X-linked dominant or an autosomal dominant inheritance mode
    corecore