115 research outputs found

    Strategic use of (un)certainty expressions

    Get PDF

    Effects of Naltrexone on Pain Sensitivity and Mood in Fibromyalgia: No Evidence for Endogenous Opioid Pathophysiology

    Get PDF
    The pathophysiological mechanisms underlying fibromyalgia are still unknown, although some evidence points to endogenous opioid dysfunction. We examined how endogenous opioid antagonism affects pain and mood for women with and without fibromyalgia. Ten women with fibromyalgia and ten age- and gender-matched, healthy controls each attended two laboratory sessions. Each participant received naltrexone (50mg) at one session, and placebo at the other session, in a randomized and double-blind fashion. Participants were tested for changes in sensitivity to heat, cold, and mechanical pain. Additionally, we collected measures of mood and opioid withdrawal symptoms during the laboratory sessions and at home the night following each session. At baseline, the fibromyalgia group exhibited more somatic complaints, greater sensory sensitivity, more opioid withdrawal somatic symptoms, and lower mechanical and cold pain-tolerance than did the healthy control group. Neither group experienced changes in pain sensitivity due to naltrexone administration. Naltrexone did not differentially affect self-reported withdrawal symptoms, or mood, in the fibromyalgia and control groups. Consistent with prior research, there was no evidence found for abnormal endogenous opioid activity in women with fibromyalgia

    To See Invisible Rights: Quantifying Araman informal tenure and its immediate relationship with Social Forestry in Central Java, Indonesia

    Get PDF
    The process of formalizing traditional, unwritten tenure systems is no simple task. Inaccurate or incomplete representation of the informal system may create more problems for the local communities. As such, a full understanding of the local informal tenure systems is necessary before implementing any type of land reform. This paper discusses a case study conducted in the Tawanmangu area of Central Java, Indonesia, in which the informal system known as Araman is quantified on paper with the help of the Tenure Map tool, survey, and interview. The challenges of quantifying and understanding an informal system are discussed with the following viewpoints: key aspects of the Araman structure, the relationship between the informal Araman system and the formal Social Forestry system also present in the area, and finally comments on the strengths and weaknesses of the Tenure Map tool after using it in the field

    The Diurnal Rhythm of Insulin Receptor Substrate-1 (IRS-1) and Kir4.1 in Diabetes: Implications for a Clock Gene Bmal1

    Get PDF
    Purpose: Diabetes leads to the downregulation of the retinal Kir4.1 channels and Müller cell dysfunction. The insulin receptor substrate-1 (IRS-1) is a critical regulator of insulin signaling in Müller cells. Circadian rhythms play an integral role in normal physiology; however, diabetes leads to a circadian dysrhythmia. We hypothesize that diabetes will result in a circadian dysrhythmia of IRS-1 and Kir4.1 and disturbed clock gene function will have a critical role in regulating Kir4.1 channels. Methods: We assessed a diurnal rhythm of retinal IRS-1 and Kir4.1 in db/db mice. The Kir4.1 function was evaluated using a whole-cell recording of Müller cells. The rat Müller cells (rMC-1) were used to undertake in vitro studies using a siRNA. Results: The IRS-1 exhibited a diurnal rhythm in control mice; however, with diabetes, this natural rhythm was lost. The Kir4.1 levels peaked and troughed at times similar to the IRS-1 rhythm. The IRS-1 silencing in the rMC-1 led to a decrease in Kir4.1 and BMAL1. The insulin treatment of retinal explants upregulated Kir4.1 possibly via upregulation of BMAL1 and phosphorylation of IRS-1 and Akt-1. Conclusions: Our studies highlight that IRS-1, by regulating BMAL1, is an important regulator of Kir4.1 in Müller cells and the dysfunctional signaling mediated by IRS-1 may be detrimental to Kir4.1

    ER-mitochondria contacts and cholesterol metabolism are disrupted by disease-associated tau protein

    Get PDF
    Abnormal tau protein impairs mitochondrial function, including transport, dynamics, and bioenergetics. Mitochondria interact with the endoplasmic reticulum (ER) via mitochondria-associated ER membranes (MAMs), which coordinate and modulate many cellular functions, including mitochondrial cholesterol metabolism. Here, we show that abnormal tau loosens the association between the ER and mitochondria in vivo and in vitro. Especially, ER-mitochondria interactions via vesicle-associated membrane protein-associated protein (VAPB)-protein tyrosine phosphatase-interacting protein 51 (PTPIP51) are decreased in the presence of abnormal tau. Disruption of MAMs in cells with abnormal tau alters the levels of mitochondrial cholesterol and pregnenolone, indicating that conversion of cholesterol into pregnenolone is impaired. Opposite effects are observed in the absence of tau. Besides, targeted metabolomics reveals overall alterations in cholesterol-related metabolites by tau. The inhibition of GSK3β decreases abnormal tau hyperphosphorylation and increases VAPB-PTPIP51 interactions, restoring mitochondrial cholesterol and pregnenolone levels. This study is the first to highlight a link between tau-induced impairments in the ER-mitochondria interaction and cholesterol metabolism

    Regulation of IL-1β-induced NFκB by hydroxylases links key hypoxic and inflammatory signaling pathways

    Get PDF
    Hypoxia is a prominent feature of chronically inflamed tissues. Oxygen-sensing hydroxylases control transcriptional adaptation to hypoxia through the regulation of hypoxia-inducible factor (HIF) and nuclear factor ?B (NF-?B), both of which can regulate the inflammatory response. Furthermore, pharmacologic hydroxylase inhibitors reduce inflammation in multiple animal models. However, the underlying mechanism(s) linking hydroxylase activity to inflammatory signaling remains unclear. IL-1ß, a major proinflammatory cytokine that regulates NF-?B, is associated with multiple inflammatory pathologies. We demonstrate that a combination of prolyl hydroxylase 1 and factor inhibiting HIF hydroxylase isoforms regulates IL-1ß-induced NF-?B at the level of (or downstream of) the tumor necrosis factor receptor-associated factor 6 complex. Multiple proteins of the distal IL-1ß-signaling pathway are subject to hydroxylation and form complexes with either prolyl hydroxylase 1 or factor inhibiting HIF. Thus, we hypothesize that hydroxylases regulate IL-1ß signaling and subsequent inflammatory gene expression. Furthermore, hydroxylase inhibition represents a unique approach to the inhibition of IL-1ß-dependent inflammatory signaling
    corecore