1,451 research outputs found

    Phosphonopeptides Revisited, in an Era of Increasing Antimicrobial Resistance

    Get PDF
    Given the increase in resistance to antibacterial agents, there is an urgent need for the development of new agents with novel modes of action. As an interim solution, it is also prudent to reinvestigate old or abandoned antibacterial compounds to assess their efficacy in the context of widespread resistance to conventional agents. In the 1970s, much work was performed on the development of peptide mimetics, exemplified by the phosphonopeptide, alafosfalin. We investigated the activity of alafosfalin, di-alanyl fosfalin and β-chloro-L-alanyl-β-chloro-L-alanine against 297 bacterial isolates, including carbapenemase-producing Enterobacterales (CPE) (n = 128), methicillin-resistant Staphylococcus aureus (MRSA) (n = 37) and glycopeptide-resistant enterococci (GRE) (n = 43). The interaction of alafosfalin with meropenem was also examined against 20 isolates of CPE. The MIC50 and MIC90 of alafosfalin for CPE were 1 mg/L and 4 mg/L, respectively and alafosfalin acted synergistically when combined with meropenem against 16 of 20 isolates of CPE. Di-alanyl fosfalin showed potent activity against glycopeptide-resistant isolates of Enterococcus faecalis (MIC90; 0.5 mg/L) and Enterococcus faecium (MIC90; 2 mg/L). Alafosfalin was only moderately active against MRSA (MIC90; 8 mg/L), whereas β-chloro-L-alanyl-β-chloro-L-alanine was slightly more active (MIC90; 4 mg/L). This study shows that phosphonopeptides, including alafosfalin, may have a therapeutic role to play in an era of increasing antibacterial resistance

    Affective Computing for Late-Life Mood and Cognitive Disorders

    Get PDF
    Affective computing (also referred to as artificial emotion intelligence or emotion AI) is the study and development of systems and devices that can recognize, interpret, process, and simulate emotion or other affective phenomena. With the rapid growth in the aging population around the world, affective computing has immense potential to benefit the treatment and care of late-life mood and cognitive disorders. For late-life depression, affective computing ranging from vocal biomarkers to facial expressions to social media behavioral analysis can be used to address inadequacies of current screening and diagnostic approaches, mitigate loneliness and isolation, provide more personalized treatment approaches, and detect risk of suicide. Similarly, for Alzheimer\u27s disease, eye movement analysis, vocal biomarkers, and driving and behavior can provide objective biomarkers for early identification and monitoring, allow more comprehensive understanding of daily life and disease fluctuations, and facilitate an understanding of behavioral and psychological symptoms such as agitation. To optimize the utility of affective computing while mitigating potential risks and ensure responsible development, ethical development of affective computing applications for late-life mood and cognitive disorders is needed

    Spatial Patterns of Correlation Between Cortical Amyloid and Cortical Thickness in a Tertiary Clinical Population With Memory Deficit

    Get PDF
    © 2020, The Author(s). To estimate regional Alzheimer disease (AD) pathology burden clinically, analysis methods that enable tracking brain amyloid or tau positron emission tomography (PET) with magnetic resonance imaging (MRI) measures are needed. We therefore developed a robust MRI analysis method to identify brain regions that correlate linearly with regional amyloid burden in congruent PET images. This method was designed to reduce data variance and improve the sensitivity of the detection of cortical thickness–amyloid correlation by using whole brain modeling, nonlinear image coregistration, and partial volume correction. Using this method, a cross-sectional analysis of 75 tertiary memory clinic AD patients was performed to test our hypothesis that regional amyloid burden and cortical thickness are inversely correlated in medial temporal neocortical regions. Medial temporal cortical thicknesses were not correlated with their regional amyloid burden, whereas cortical thicknesses in the lateral temporal, lateral parietal, and frontal regions were inversely correlated with amyloid burden. This study demonstrates the robustness of our technique combining whole brain modeling, nonlinear image coregistration, and partial volume correction to track the differential correlation between regional amyloid burden and cortical thinning in specific brain regions. This method could be used with amyloid and tau PET to assess corresponding cortical thickness changes

    Swift Observations of GRB 050603: An afterglow with a steep late time decay slope

    Full text link
    We report the results of Swift observations of the Gamma Ray Burst GRB 050603. With a V magnitude V=18.2 about 10 hours after the burst the optical afterglow was the brightest so far detected by Swift and one of the brightest optical afterglows ever seen. The Burst Alert Telescope (BAT) light curves show three fast-rise-exponential-decay spikes with T90T_{90}=12s and a fluence of 7.6×10−6\times 10^{-6} ergs cm−2^{-2} in the 15-150 keV band. With an Eγ,iso=1.26×1054E_{\rm \gamma, iso} = 1.26 \times 10^{54} ergs it was also one of the most energetic bursts of all times. The Swift spacecraft began observing of the afterglow with the narrow-field instruments about 10 hours after the detection of the burst. The burst was bright enough to be detected by the Swift UV/Optical telescope (UVOT) for almost 3 days and by the X-ray Telescope (XRT) for a week after the burst. The X-ray light curve shows a rapidly fading afterglow with a decay index α\alpha=1.76−0.07+0.15^{+0.15}_{-0.07}. The X-ray energy spectral index was βX\beta_{\rm X}=0.71\plm0.10 with the column density in agreement with the Galactic value. The spectral analysis does not show an obvious change in the X-ray spectral slope over time. The optical UVOT light curve decays with a slope of α\alpha=1.8\plm0.2. The steepness and the similarity of the optical and X-ray decay rates suggest that the afterglow was observed after the jet break. We estimate a jet opening angle of about 1-2∘^{\circ}Comment: 14 pages, accepted for publication in Ap

    Nonthermal Hard X-ray Emission and Iron Kalpha Emission from a Superflare on II Pegasi

    Full text link
    We report on an X-ray flare detected on the active binary system II~Pegasi with the Swift telescope. The trigger had a 10-200 keV luminosity of 2.2×1032\times10^{32} erg s−1^{-1}-- a superflare, by comparison with energies of typical stellar flares on active binary systems. The trigger spectrum indicates a hot thermal plasma with T∼\sim180 ×106\times10^{6}K. X-ray spectral analysis from 0.8--200 keV with the X-Ray Telescope and BAT in the next two orbits reveals evidence for a thermal component (T>>80 ×106\times10^{6}K) and Fe K 6.4 keV emission. A tail of emission out to 200 keV can be fit with either an extremely high temperature thermal plasma (T∼3×108\sim3\times10^{8}K) or power-law emission. Based on analogies with solar flares, we attribute the excess continuum emission to nonthermal thick-target bremsstrahlung emission from a population of accelerated electrons. We estimate the radiated energy from 0.01--200 keV to be ∼6×1036\sim6\times10^{36} erg, the total radiated energy over all wavelengths ∼1038\sim10^{38} erg, the energy in nonthermal electrons above 20 keV ∼3×1040\sim3\times10^{40} erg, and conducted energy <5×1043<5\times10^{43} erg. The nonthermal interpretation gives a reasonable value for the total energy in electrons >> 20 keV when compared to the upper and lower bounds on the thermal energy content of the flare. This marks the first occasion in which evidence exists for nonthermal hard X-ray emission from a stellar flare. We investigate the emission mechanism responsible for producing the 6.4 keV feature, and find that collisional ionization from nonthermal electrons appears to be more plausible than the photoionization mechanism usually invoked on the Sun and pre-main sequence stars.Comment: 41 pages, 7 figures, accepted for publication in the Astrophysical Journa

    Impacts of organic and conventional crop management on diversity and activity of free-living nitrogen fixing bacteria and total bacteria are subsidiary to temporal effects

    Get PDF
    A three year field study (2007-2009) of the diversity and numbers of the total and metabolically active free-living diazotophic bacteria and total bacterial communities in organic and conventionally managed agricultural soil was conducted at the Nafferton Factorial Systems Comparison (NFSC) study, in northeast England. The result demonstrated that there was no consistent effect of either organic or conventional soil management across the three years on the diversity or quantity of either diazotrophic or total bacterial communities. However, ordination analyses carried out on data from each individual year showed that factors associated with the different fertility management measures including availability of nitrogen species, organic carbon and pH, did exert significant effects on the structure of both diazotrophic and total bacterial communities. It appeared that the dominant drivers of qualitative and quantitative changes in both communities were annual and seasonal effects. Moreover, regression analyses showed activity of both communities was significantly affected by soil temperature and climatic conditions. The diazotrophic community showed no significant change in diversity across the three years, however, the total bacterial community significantly increased in diversity year on year. Diversity was always greatest during March for both diazotrophic and total bacterial communities. Quantitative analyses using qPCR of each community indicated that metabolically active diazotrophs were highest in year 1 but the population significantly declined in year 2 before recovering somewhat in the final year. The total bacterial population in contrast increased significantly each year. Seasonal effects were less consistent in this quantitative study

    Development of the preterm gut microbiome in twins at risk of necrotising enterocolitis and sepsis

    Get PDF
    The preterm gut microbiome is a complex dynamic community influenced by genetic and environmental factors and is implicated in the pathogenesis of necrotising enterocolitis (NEC) and sepsis. We aimed to explore the longitudinal development of the gut microbiome in preterm twins to determine how shared environmental and genetic factors may influence temporal changes and compared this to the expressed breast milk (EBM) microbiome. Stool samples (n = 173) from 27 infants (12 twin pairs and 1 triplet set) and EBM (n = 18) from 4 mothers were collected longitudinally. All samples underwent PCR-DGGE (denaturing gradient gel electrophoresis) analysis and a selected subset underwent 454 pyrosequencing. Stool and EBM shared a core microbiome dominated by Enterobacteriaceae, Enterococcaceae, and Staphylococcaceae. The gut microbiome showed greater similarity between siblings compared to unrelated individuals. Pyrosequencing revealed a reduction in diversity and increasing dominance of Escherichia sp. preceding NEC that was not observed in the healthy twin. Antibiotic treatment had a substantial effect on the gut microbiome, reducing Escherichia sp. and increasing other Enterobacteriaceae. This study demonstrates related preterm twins share similar gut microbiome development, even within the complex environment of neonatal intensive care. This is likely a result of shared genetic and immunomodulatory factors as well as exposure to the same maternal microbiome during birth, skin contact and exposure to EBM. Environmental factors including antibiotic exposure and feeding are additional significant determinants of community structure, regardless of host genetics

    An Innovative, Prospective, Hybrid Cohort-Cluster Study Design to Characterize Dengue Virus Transmission in Multigenerational Households in Kamphaeng Phet, Thailand

    Get PDF
    Difficulties inherent in the identification of immune correlates of protection or severe disease have challenged the development and evaluation of dengue vaccines. There persist substantial gaps in knowledge about the complex effects of age and sequential dengue virus (DENV) exposures on these correlations. To address these gaps, we were conducting a novel family-based cohort-cluster study for DENV transmission in Kamphaeng Phet, Thailand. The study began in 2015 and is funded until at least 2023. As of May 2019, 2,870 individuals in 485 families were actively enrolled. The families comprise at least 1 child born into the study as a newborn, 1 other child, a parent, and a grandparent. The median age of enrolled participants is 21 years (range 0–93 years). Active surveillance is performed to detect acute dengue illnesses, and annual blood testing identifies subclinical seroconversions. Extended follow-up of this cohort will detect sequential infections and correlate antibody kinetics and sequence of infections with disease outcomes. The central goal of this prospective study is to characterize how different DENV exposure histories within multigenerational family units, from DENV-naive infants to grandparents with multiple prior DENV exposures, affect transmission, disease, and protection at the level of the individual, household, and community

    Assessing the role of multiple mechanisms increasing the age of dengue cases in Thailand

    Get PDF
    The mean age of dengue hemorrhagic fever (DHF) cases increased considerably in Thailand from 8.1 to 24.3 y between 1981 and 2017 (mean annual increase of 0.45 y). Alternative proposed explanations for this trend, such as changes in surveillance practices, reduced mosquito–human contact, and shifts in population demographics, have different implications for global dengue epidemiology. To evaluate the contribution of each of these hypothesized mechanisms to the observed data, we developed 20 nested epidemiological models of dengue virus infection, allowing for variation over time in population demographics, infection hazards, and reporting rates. We also quantified the effect of removing or retaining each source of variation in simulations of the age trajectory. Shifts in the age structure of susceptibility explained 58% of the observed change in age. Adding heterogeneous reporting by age and reductions in per-serotype infection hazard to models with shifts in susceptibility explained an additional 42%. Reductions in infection hazards were mostly driven by changes in the number of infectious individuals at any time (another consequence of shifting age demographics) rather than changes in the transmissibility of individual infections. We conclude that the demographic transition drives the overwhelming majority of the observed change as it changes both the age structure of susceptibility and the number of infectious individuals. With the projected Thai population age structure, our results suggest a continuing increase in age of DHF cases, shifting the burden toward individuals with more comorbidity. These insights into dengue epidemiology may be relevant to many regions of the globe currently undergoing comparable changes in population demographics
    • …
    corecore